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1.0 SETTING THE PERSPECTIVE: AIDED ADVERSARIAL DECISION MAIKING
AND INFORMATION WARFARE

This report describes the second phase of work conducted at the Center for Multisource
Information Fusion (CMIF) at the State University of New York at Buffalo (SUNY@Buffalo;
hereafter "UB") in the research area of Aided Adversarial Decision Making (AADM). In
particular, this work has focused on AADM in Information Warfare environments. The first
phase (see Llinas, Drury, Bialas & Chen, 1997) examined a number of factors that surround this
topic; one particular emphasis was in examining informational dependencies and vulnerabilities
in AADM to offensive Information Warfare (1W) operations, but in exploring this issue it was
realized that many other factors influence the nature of AADM, and these factors were also
examined (e.g., informational value in decision making, cultural differences in AADM, patterns
of human error, etc.). Brief comments are made here on this prior work to help set the stage for
the material discussed in the body of this Phase 2 report.

The second phase of this work focused in particular on "Human Trust in Automation" in
1W environments. While the first phase uncovered many factors that give shape to the overall
problem of AADM, in discussions with Air Force Research Laboratory (AFRL) staff it was
realized that in spite of the possible (and combinatorial) effects of many of these factors, a root
issue is whether users trust the computer-based decision aids' they are using. In our literature
searches on this topic (described in Section 2), it was somewhat surprising, in the era of the
Internet/Web, to see very little work on this subject. Particularly lacking were experimental
studies with human subjects. It was expected that some body of work on this topic would have
been uncovered; in many modem-day defense applications involving the use of computer-based
automation, users frequently ignore, or worse yet, turn off automated support systems for a
variety of reasons. Some of these reasons don't have to do with trust explicitly, but many are
trust-based, so this issue seems rather fundamental to the effective utilization of workstation-
based decision aids of various types. Further, in most prior works, including those we reviewed
in the sociological literature, the notion of trust was studied in the framework of friendly actors.
Our focus is on the adversarial case, where situations are created by hostile "Information
Operations,,, in which the integrity of the information being processed by the decision aid/data
fusion process is suspect. This is in addition to the possibilities for deception, etc. that comprise
the field of "counterinformation"; see Figure 1. 1 on the next page.

Thus, we see the trust in automation issue as a research topic rich with intellectual issues
and having potentially high payoff to the military, If deep understanding about the nature of trust
establishment, trust loss, mistrust, distrust, etc., can be developed, improvements in both system
design and in operational procedures should be feasible, leading to high payoff in the sense of
effective use of decision-aided systems even when under information attack. In this effort, we
have striven to provide a solid understanding of the multi-dimensional characteristics of trust,

I In this, and in the prior report, the automated decision aid is postulated as an automated data fusion process
supporting both individual target position and identification (ID) estimates ("Level 1 fusion"), situational estimates
("Level 2 fusion"), and threat estimates ("Level 3 fusion"). The prior phase report discusses the role of automated
data fusion in AADM, and information dependencies and vulnerabilities of the data fusion process.
'Ti is the term that the IW community seems to have chosen to signify offensive-type IW activities.



and have also centered part of our effort on understanding various aspects (e.g., metrics)
necessary to the conduct of well-designed experiments in which aspects of trust in automation
can be studied empirically. We hope to both establish a Laboratory for Information Warfare
Studies and conduct experiments in the lab in our next phase.

WARFARE

MhUTERy WINFORMATION INFORMATIONIN E

CuNr I m,

Figure 1.1 Prominent IW Activities

In our work, we have made reference, for the purpose of familiarization, to a sampling of
works from the extensive and very dynamic body of literature dealing with the elusive and
complex topic of IW3. These works reveal that the subject is quite intricate and complicated,
from the policy level down to the operational level. In particular, offensive 1W operations turn
out to be a sensitive, and apparently classified subject, most generally available works on IW
operations are about defensive operations, involving such issues as encryption and procedural
security, etc. In our work, we simply postulate environments where the integrity of the
information in the aiding system (the computer-based decision aid, or data fusion process), is
suspect, due to whatever offensive 1W techniques (a simple example is viral attack). It is
understood that to deal with the subject of trust in a thorough way we will need better
understanding of offensive IW techniques, but we focus on the basic issues for now, given the
primitive state of understanding of trust in automation.

'See FM 100-6, 1994; Luoma, 1994; Denning, 1990; Szafranski, 1995; Stein, 1995; and Libicki, 1997 for examples
of the works on IW
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1.1 Motivating Problem Framework-a Model

We mentioned above that 1W is a multi-dimensional topic. In our first phase, we
attempted to combine these dimensions into an aided decision making model described here.
The aided decision model presented in the following has two levels: 1) the Two-Sided
Adversarial General Model (Fig 1.2) is the upper level model which describes the relationship
between two adversarial forces, both of whom have decision aids and 2) the Aided Human
Decision Making Model (Fig 1.3), which is based on the model of situation awareness by
Endsley (1995) and which also integrated the concepts from the modified Recognition-Primed
Decision (RPD) model by Kaempf, Klein, Thordsen and Wolf (1996) and the Mixed Initiative
Model (MIM) by Riley (1989), which focuses on the detailed information processing in the
human-decision aided cooperative system of either side of the adversarial forces in the general
model.

1.1.1 Assum~tions and Constraints

The proposed aided decision making model is focused on the following considerations.

"* The decision making tasks discussed in the Phase 1 study (primarily focused on tactical
rather than operational decision making).

"* A decision environment which is assumed to be adversarial, complex, time-pressured, risky,
dynamic, and involving various types of uncertainty.

"* A decision making process supported by a data fusion-based decision aid. The information
to the decision maker is primarily provided by the display interfaces of the decision aid.

"* Cases where the decision makers are assumed to be experienced and well-trained in the
designated command and control tasks and in interacting with the decision-aiding system.

The case of the single decision-maker; that is, group or distributed types of aided decision
making were not considered in this study.

1.1.2 Two-Sided Adversarial General Model

This general model, as shown in Figure 1.2, depicts the information flow between the two
opposing forces-adversary and friendly. For each side, three major nodes are addressed: the
human commander (the decision maker), the data fusion system (the decision aid), and the world
(as perceived through information resources). As shown in the diagram, in order for human
commanders to perform command and control of the battlefield, the sensors collect data (which
often relate to the states of environment, antagonists, and protagonists) from the battlefield or the
world and feed this information into the data processing/fusion system; the processed
information is displayed to the human commander who can then make a decision. In addition,
the supporting information, other than current battlefield information, may also be accessed
through those available databases connecting to the decision-aiding system. Decision makers
gather information primarily by interacting with the display and control interface(s) provided by

3
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the decision-aiding system. Furthermore, the decision maker may also collect information
through other (perhaps unofficial) sources. Using the information gathered, the decision maker
thus forms a situation model and, based on the model, plans the command and control actions.

Although the decision making paradigms in this model are generally the same for both
sides, the information flows or decision making results can be very different. The differences in
characteristics between the entities are the determinants for different decision making results.
The information dependencies and vulnerabilities in aided adversarial decision making are
determined by the entity characteristics in this model. Technology is one of the major factors,
especially the ability to design and use sophisticated data sensors, data processing systems,
interactive interfaces, and communications systems for command and control. Cultural
differences are another potential factor. Different cultures can result in different command and
control patterns, different personal decision making processes, and thus require different decision
aids for maximum effectiveness.

1.1.3 Aided Human Decision Making Model

As shown in Figure 1.3 on the page before, this model depicts a rather detailed view
inside the decision making process, especially for the human side. The basic relationships
among the human decision maker, decision aid, and battlefield have already been defined in the
general model described in Section 1. 1.2. The human decision making process can be
categorized as comprising two major phases: situation awareness and action planning. That is,
based upon the information gathered from the decision aid or/and from the world, the decision
maker can form a situation model and then, based on the model, plan the command and control
actions. This part of the model will be discussed in more detail below.

1.2 Dimensions of the Problem

1.2.1 Automated Data Fusion as a Decision Aid

As noted above, this project deals with aided adversarial decision making (DM). The
legacy of research in computer-based decision aids is extensive, and for several years there were
conferences which focused on and discussed the work being done by a rather large community in
the development of not only prototype aids themselves but also on the underlying principles of
decision aid development (i.e., both the "what" and the "how to"). In the present case, we
hypothesize that the general nature of a computer-based decision aid for each adversary in our
general model takes the form of,.and is based on, the notion that a data or information fusion
process provides the basis for the aid. Data fusion (DF) processing is itself a rather broad and
multidisciplinary topic but can be modeled, to about the same level of fidelity as our general
model described above, by a "process model" originally developed by the Joint Directors of
Laboratories Data Fusion Group (JDIJDFG), a defense laboratory data fusion technology
oversight committee. This general model is showni in Figure 1.4 on the next page and can be
seen to comprise 4 "Levels" of processing, which are discussed in detail below.

6
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Level 1: those processes involved with normalizing a set of multisource-based inputs (a data
preparation step prior to combining/fusing), association-correlation-assignment processing (to
relate observations to hypothetical objects and related estimation processes about object
features), and fusion-based estimation processes which estimate both the kinematics and identity
of the targets hypothesized. Thus, Level 1 processing produces what might be called a "labeled
set"--of individual targets (points in space), each having labels describing their kinematic and
identity properties.

Level 2: those processes involved with situational estimation, traditionally involving aggregation
of single (Level 1) object estimates into "order of battle (OB)" structures (i.e., aggregated
targets), and behaviorally-based estimates (events and activities). Thus, Level 2 processing,
which is largely (but not exclusively) symbolically based, produces a contextual interpretation of
an abstraction, typically labeled a "situation," by fusing Level 1 estimates, a priori knowledge,
and other observations.

Level 3: those processes, also predominantly symbolic in nature, that produce what is in essence
a "special" situation estimate traditionally called a "threat" estimate. A threat state or situation is
distinguished from benign situations by three factors: the idea that a lethal capability ("lethality")
exists on the hostile side, that there is an opportunity to employ that lethality, and that there is an
intent to use that lethality. Hence, these processes focus on estimating these factors in particular.

Level 4: those processes which enable a sense of "intelligent control" or adaptation of the overall
fusion process. Typically these processes are considered to involve either control over (a) input
source/sensor operations (sometimes called "sensor management" or "collection management"),
and/or (b) intelligent adaptation of the internal (Levels 1-3) processes of the DF process itself.
Control of the latter type can be implemented either parametrically or by controlled switching
and optimization in the use of multiple algorithms or processes for a given DF function.

1.2.2 Inf6rmational Value in Decision Making

Central to the analysis of the effects of IW on decision making is the assessment of
Informational Value in DM. 1W attacks will lead to the deletion, corruption, and alteration of
quanta of data and/or information in any automated DM support system or in the mind of the
user/analyst/operator. Presuming validity in the assertions of the Defense Information Systems
Agency (DISA) which argues that perfect protection of information in networks is impossible, or
at least unaffordable into the mid-term future, information will indeed be compromised and
systems should be designed under this assumption. So the immediate question is, if this happens,
"so what?"

The approaches taken in Phase 1 drew heavily from the works of Morris (1964), Yovits
and Abilock (1974), and Ackoff (1958), among others, each of whom has examined the question
of informational value in DM in somewhat different but related ways. The models and concepts
drawn from these references were observed to also have similarities to those from the theories
associated with Reinforcement Learning, which also constructs a probabilistic (expectation-
centered) model of the roles of information in learning processes.

8



Much of what was synthesized in this research was excerpted from Yovits and Abilock
(1974). Additionally, Morris (1964) pointed out that it is now generally recognized that
"information theory" is neither a rival to, nor a substitute for, a general theory of signs (i.e.,
semiotics). The frequently-cited Shannon and Weaver information theoretic viewpoint concerns
the transmission of a message as a symbol string independent of its content. Bar-Hillel (1955)
and MacKay (1952) took alternative views. Further, MacKay regarded information as that which
changes our representations-that is, our signs. Gaining information is thus a mechanism for
changing our expectations (i.e., our dispositions to respond), caused by a sign. He distinguished
between selective and semantic information. Selective information gives the information
necessary to select the message itself and is not concerned with the content of the message; it is
in some sense a signaling theory. Semantic information, on the other hand, is concerned with the
content of the message4 . Shannon's theory thus deals with selective information problems. In
examining the research in semantic information, we observed that Carnap and Bar-Hillel (1952)
and Winograd (1972) are perhaps best known for their work in this area.

The aforementioned views of information are *two of the three approaches or levels
identified in studies of information theory by Weaver. The third level is known as the behavioral
or effectiveness level and deals with the effect that information has on the person using it.
Ackoff (1958) has dealt with information problems at this behavioral level. The work of this
project is considered to lie in this area, since we are concerned with the effect of information on
decision making behavior by a human, in a computer-assisted mode. The Phase 1 report (Llinas
et al., 1997) elaborates on each of these viewpoints on informational value.

We also examined work which related informational value to a DM model. Morris
(1964) has identified three general requirements of action involved in the decision making
process. A decision maker must obtain information about the situation in which he is to act,
select among courses of action, and execute this alternative by some specific course of behavior.
To effect a meaningful analysis of information, one must examine in detail that which makes
decision making such a challenging activity-uncertainty. We concerned ourselves with
uncertainty because we will argue that a key role for information is its influence on uncertainty
within a decision making process.

The decision maker usually views a complex decision situation in terms of his roles and
responsibilities within it, for selecting courses of action (COA), which then lead to possible
outcomes. He may be uncertain about what outcomes will occur when a particular course of
action is executed. This uncertainty associated with the execution of the alternatives is what
Yovits and Abilock call executional uncertainty. A second type of uncertainty identified is goal
uncertainty. The decision maker may have only a vague notion of the goals to which he aspires,
and he may also be uncertain as to the degree to which each of the outcomes will satisfy the
various goals. The third type of uncertainty which the decision maker confronts is that concerned
with the states of nature. He may not be able to identify all the possible states, but even if he
could, he may still be uncertain as to the relationship between the set of states and the other
decision elements. This is termed environmental uncertainty. A complete model of a complex

-Intelligence analysts similarly concern themselves with "external" information (i.e., that not related to message
content) and "internals," which are the content-bearing elements of messages.

9



decision situation must deal explicitly with all of -these types of uncertainty. The conceptual
decision model suggested by Yovits and Abilock explicitly recognizes all of the decision
elements as well as the associated sources of uncertainty. The following Table 1.1 summarizes
these ideas and uncertainty types.

Table 1.1 Uncertainty

Type Of Uncertainty Aspect Represented

Executional Outcome Probability, given a selected COA

Goal Goal Uncertainty (specifically), and/or relationship between Outcomes and Goal
Satisfaction

Environmental State-of-Nature Uncertainty (specifically), and/or relationship between States of
Nature and other Decision Elements

1.2.3 Errors In Human Decision Makin2

In the section above we defined the decision making task in functional terms (i.e., what
are the states of nature, the possible actions, and the values of the resulting outcomes). Based on
these definitions, we introduced measures of the value of information to the decision system. We
then went beyond a functional description to explore the alternatives for allocating the various
functions between human and automated decision components, informed by the models of the
humnan functioning in adversarial systems developed in Section 1. 1. One aspect of attempting to
define these alternatives requires exploring the possible decision making errors, and how they are
influenced by humans and automated systems as decision makers.

1.2.3.1 What is Error?

Reason (1990) concentrates on human error rather than error in general, but we can
amend his human error definition as follows:

Error is when a planned sequence of activities fails to achieve its intended outcome, when failure
cannot be attributed to a chance agency.

Note that this defines three elements:

1. A goal or intention (i.e., the system is purposive or teleological)

2. A set of actions is chosen

3. An outcome of value is implied

These elements can all be seen in the model we elaborated on in Section 5 of (Llinas et
al., 1997), where decision was defined as the choice of a series of actions, based on a value
structure (intentions) for outcomes. Errors are thus occasions where the "correct" action was not
chosen. Again speaking specifically of human error, Woods and Roth (1988) state that "error" is
a judgment made in hindsight. It is thus assumed possible to evaluate the quality of a decision
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(i.e., determine if it was an error) by reference to some external, but lagged, validation criterion
where "truth" about the whole situation was eventually discovered. As evidenced by legal
inquiries into major system failures (Challenger, Vincennes, Bhopal, Herald of Free Enterprise),
this external validation is possible in principle, but difficult and costly in practice. This idea is
embodied in the concept of a criterion against which decision making performance can be
judged. Hollnagel (1998) gives three parts to an error definition:

1. A performance standard or criterion

2. An event or action

3. A degree of volition

He discusses why each of these may be difficult concepts in a theoretical development,
but does emerge with a second distinction useful to our thesis: error genotypes and phenotypes.
The genotype is a (generic) cause of the error, while the phenotype is the (specific) manifestation
of that cause in a particular system. Those who must deal with human error are either trying to
infer genotypes from phenotypes, (incident investigation) or infer phenotypes from genotypes
(incident prediction). In data fusion-supported adversarial systems the immediate need is for
incident prediction, so that one must start with the genotypes of erroneous action.

As noted above, errors imply both intention and action. Indeed, Norman's (198 1) early
classification of er-ror genotypes divided them into two categories.

* Mistakes: Following a wrong intention

Slips: Correct intention but wrong action

Combining this with Rasmussen's (1987) three levels of human functioning (skill-based,
rule-based, knowledge-based), and adding specific memory retrieval failures (lapses), brought
Reason (1990) to three basic error types in Table 1.2.

Table 1.2 Error Genotypes, Adapted from Reason (1990)

Level Error Genotypes

Skill-based Slips, Lapses

Rule-based Rule-based mistakes

Knowledge-based Knowledge-based mistakes

These form the basis of expansions by Reason, Hollnagel and others into more detailed
lists or taxonomies of error types.

1.2.4 Cultural Effects On Adversarial Decision Making~

No specific works in the area of cultural effects on decision making or especially
adversarial decision making were able to be located in our literature search efforts. However, we
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found what we believe to be reasonably related works in the management literature having to do
with issues in multinational corporations and their various functions and operations. These
inputs range from definitions of what culture is to the notions of different societal values and
beliefs, recognition factors for decision-makers and some other related topics. Even these works,
however, do not address directly the impact of these factors explicitly on decision making. As a
first-cut input addressing this topic for our purposes, we simply collated and assembled some
inputs from the cited references. We would hope to investigate this subject further in the next
phase of work.

1.2.4.1. Basic Notions of Culture: What Culture Is (Hoecklin, 1995):

Culture, as defined by Hoecklin (1995) has the following characteristics.

1. It Is A Shared System Of Meanings. Culture dictates what groups of people pay attention to.
It guides how the world is perceived, how the self is experienced, and how life itself is organized.
Individuals within a group share patterns that enable them to see the same things in the same way
and this holds them together. Each person carries within her or himself learned ways of finding
meaning in experiences. In order for effective, stable and meaningful interaction to occur, people
must have a shared system of meaning. There must be some common ways of understanding
events and behavior, and ways of anticipating how other people in your social group are likely to
behave. It is only when the meanings do coincide that effective communication can happen.

2. It Is Relative. There is no cultural absolute. People in different cultures perceive the world
differently and have different ways of doing things, and there is no set standard for considering
one group as intrinsically superior or inferior to any other. Each national culture is relative to
other cultures' ways of perceiving the world and of doing things.

3. It Is Learned. Culture is derived from one's social environment, not from ones genetic make-
UP.

4. It Is About Groups. Culture is a collective phenomenon that is abhout shared values and
meanings.

1.2.5 Trust in Automation

The above sections provide an overview of our previous work, and it can be seen that
there are many factors to consider in attempting to develop an understanding of AADM.
However, for environments where the human is the "ultimate transducer," (i.e., the means toward
enablement of "final" decisions and subsequent action) we hypothesize that there may be a single
focusing issue-"tArust in automation"-that might be a very high-payoff aspect of the AADM
problem. Indeed, we argue, if that final human decision and action depend on the degree to
which the human trusts the decision aid output (no matter how developed, corrupted, or
displayed), it is that degree of trust which may be the deciding factor in proceeding with a
decision and consequent action. Motivated in part by this assertion and in part by the fact that
trust is a factor in any case, we focused our efforts on the subject of trust in automation.
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1.2.5.1 State of Research:

It will be seen from the sections that follow that the notion of trust is also complex and
multi-dimensional, and that rather little work has been done on the particular subject of trust in
automation. The starting point turns out to be, as one might expect, the sociological literature on
trust among humans. The dimensions and factors affecting human trust do seem to carry over to
the case of trust in automation, perhaps because of the human-like metaphor (e.g., 2001: A
Space Odyssey's "HAL") especially ascribed to computers.S Section 2 will elaborate
considerably on these notions, examining the human engineering and the sociological literature.
Since so few experiments have been done, there is, correspondingly, not much work on the
subject of measures and metrics. Section 3 below provides some discussion on this subject.
Since our focus is toward human-in-the-loop experimentation, Sections 4 and 5 describe ideas
about scenario formulation and implications for an 1W laboratory. There are many factors that
may influence the formulation of a trusted state. These factors, detailed in Table A. 1 in
Appendix A, if manipulated by an adversary to possibly influence another actor's state of trust,
may lead to information dependencies and vulnerabilities. Additional discussion on these
subjects follows in the remaining sections of the report.

1.2.5.2 Behavioral Response to Distrusted Systems:

Our assertion that trust in automation is possibly a deciding issue in determining the final
decisions and actions performed by humans implicitly depends on what has been learned or
observed to date on how humans cope with distrust in automation. While there has been little
-work to support or disprove this assertion, that work that has been done shows that there is a
significant hysteresis loop that develops when humans suspect malfunctioning decision aids. In
the tactical context of 1W, this means that an adversary could conceivably take an opponent "off-
line" through 1W actions that lead to distrust in the opponents decision-aiding system. If this
were done at some opportune time, the payoff in a combative sense could be significant. So
there is at least limited evidence that the effects of trust can indeed be quite influential in
adversarial decision making; we recommend that much more research is needed to both
understand and quantify this possibility.
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2.0 CONCEPTS AND DEFINITIONS OF TRUST AND RELATED NOTIONS

As the degree of complexity and intercommunication of society increases, the degree of
dependence on others will become greater. Almost all of everyday decisions involve trusting
someone else, or sometimes, depending on others completely. It is probably no exaggeration to
say that our society is becoming more and more based on trust. The study of trust has a long
history; however, that history is not rich in empirical studies. Deutsch (1958, 1960) made the
first traceable attempt to define and examine po 'tential characteristics of the term forty years ago.
Only a few studies since then have attempted to understand the role of trust in interpersonal
relationships. Recent studies in a sociological context (e.g., Barber, 1983; Rempel, Holmes &
Zanna, 1985; Holmes, 1991) define trust to be a multi-factorial concept which has a direct
implication for human trust in automated systems. Based on the definitions from a sociological
perspective, two essential studies (Muir, 1994; Lee & Moray, 1992) showed the role of human
trust in a continuous process control environment, producing results generally consistent with
those from the sociological study of trust, despite some exceptions. However, none of this
research. has examined the possibility of applying the concept of human trust in the 1W domain
even though the domain itself has drawn significant research attention. Therefore, to bridge the
gap between the sociological aspects and the 1W environment, research on trust in human-
machine interaction will be reviewed.

2.1 Overview of the Sociological Literature

Studies which investigate the role of trust in human relations suggest that trust is a sine
qua non (one of the foundations) and an ultimate element of such relationships. A typical
example, which shows its importance in human relationships, is a study using the dyadic
(pairwise) or interpersonal trust scale by Larzelere and Huston (1980). They measured the mean
dyadic trust scores between couples and showed that such scores depended on the couples'
relationship development status. Specifically, trust increased as the relationship developed from
casual dating couples through newlyweds to longer married couples, even though the sample
sizes of each relationship status were different. As might be expected, separated or divorced
couples showed the lowest trust scores, newlyweds, the highest, with the scores of the longer
married couples very close to those of the newlyweds.

Along with documenting the importance of trust in human relations, a few attempts have
been made to define and characterize the concept of trust in interpersonal relationships. Deutsch
(1958) made the first notable attempt and characterized trust as involving two notions:
expectation (predictability) and motivational relevance. Before discussing Deutsch's work, we
review some definitions.

Webster's Third New International Dictionary (1993) defines trust in four ways:

1. assured reliance on a person or thing

2. dependence on something future or contingent
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3. an equitable right or interest

4. a charge or a duty imposed in faith or confidence or as a condition of some
relationship

4.1 something committed or entrusted to one to be used or cared for in the
interest of another

In Deutsch's definition, two factors are recognized as the basis for trust. First, as in
Webster's second definition, the person to be trusted should be predictable. However,
predictability is not sufficient to capture all aspects of trust. Sometimes, one must predict an
event (or someone's future behavior) without being able to rely on historical information.
Secondly, without the interest of the partner who gives trust, even consistent behavior becomes
meaningless, which is the same as Webster's fourth (4. 1) category. Therefore, a human should
be fully motivated to pay attention to the partner's past behavior.

These characteristics are reflected later in Rotter's (1967) definition of trust as "an
expectancy held by an individual or group that the word, promise, verbal, or written statement of
another individual or group can be relied on." In his next study, Rotter (1971) subdivides
"expectancy" by embracing a social learning theory to include situations where humans are not
familiar with a situation and are forced to generalize and deduce from past experience. He
concludes that expectancy is a function of two distinctive types of experience: a specific
experience and a generalized expectancy resulting from the generalization from related
experience. While specific expectancy is defined as a function of degree of experience of a
-specific situation, it is understood that the degree of novelty, ambiguity, or unstructuredness of a
particular situation can affect human trust. At this point, however, it has not yet been proven
either how much the similarity or the degree of association between the current situation and the
expectancy stored in the human operator's mental model can affect human trust level or whether
its impact on human trust is positive or negative. This attribute can be labeled "familiarity," one
of the seven attributes suggested by Sheridan (1980) as major characteristics of trust, as shown
later. Other definitions of trust in human relationships are as follows:

Scanzoni (1979): An actor's willingness to arrange and repose his or her actions on another actor
because of confidence that other will provide expected gratification.

Larzelere & Huston (1980): A belief by a person in the integrity of another's behavior.

Barber (1983): The expectation of the persistence and fulfillment of the natural and the moral
social orders, expectation of technically competent role performance, expectation that partners in
interaction will carry out their aforementioned characteristics (persistence, technically competent
performance, and fiduciary responsibility).

Rempel, Holmes, & Zanna (1985): A generalized expectation related to the subjective
probability an individual assigns to the occurrence of some set of future events.

Rempel and Holmes (1986): The degree of confidence one feels when one thinks about a
relationship.
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Two of these definitions contain critical aspects of trust which can be used to examine
human trust in automation from a human factors perspective. Barber (1983) described three
types of expectations related to the three dimensions of trust: persistence of natural and moral
laws, technically competent performance, and fiduciary responsibility. According to Barber,
persistence of natural and moral laws provides a foundation of trust by establishing a constancy
in the fundamental moral and natural laws. Persistence of natural and moral laws reflects the
belief that "... the heavens will not fall," and that "... my fellow man is good, kind, and decent"
(iBarber, 1983; p. 9). These expectations provide the basic conditions for social and physical
interactions.

Technically competent performance, on the other hand, supports expectations of future
performance based on capabilities, knowledge, and expertise. This dimension of trust refers to
the ability of the other partner to produce consistent and desirable performance and can be
subdivided to include three types of expertise:

"* Everyday routine performance
"* Technical facility
"* Expert knowledge

These types will be explained later in conjunction with another human factors error
nomenclature.

Barber's third dimension of trust, fiduciary responsibility, concerns the expectation that
people have moral and social obligations to hold the interests of others above their own.
Fiduciary responsibility extends the idea of trust beyond that based on performance to one based
on moral obligations and intentions. This dimension becomes important when agents cannot be
evaluated because their expertise is not understood, or in unforeseen situations where
performance cannot be predicted. Here expectations depend upon an assessment of the
intentions and motivations of the partner, rather than on past performance or perceived
capabilities. Fiduciary responsibility also implies that the actors in a relationship exist in a
cooperative framework. In the cases of interest here, the human-automation relationship, as
embodied in the decision-aiding software built by the "friendly" force agents, would also be
called cooperative. However, importantly, we are also concerned with hostile information
attacks on this supposedly friendly software, which clouds the overall nature of the human-
computer relationship.

In addition to the dimensions of trust proposed by Barber (1983), Rempel, Holmes, and
Zanna (1985) emphasized not only components of interpersonal trust, but also the dynamic
characteristics of trust toward a partner, regarding trust as a generalized expectation related to the
subjective probability an individual assigns to the occurrence of some set of future events
(Rempel, et al., 1985). The three major components of Rempel et al.'s (1985) definition of trust
are predictability, dependability, and faith. According to Rempel et al., predictability, which
represents the consistency of recurrent behavior and the stability of the social environment, forms
the basis of trust early in the relationship. As interpersonal relationships progress with further
experience, dependability, which represents a more common understanding of the stable
dispositions, becomes an important basis of trust between humans and focuses on an evaluation
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of the qualities and characteristics attributed to the partner. In this stage, therefore, the centroid
swings and shifts away from the evaluation of the partner's dispositional attributes to the partner,
per se. Faith, on the other hand, describes the aspects of trust or belief that must go beyond the
available evidence to permit the truster to accept a given supposition as truth. Even though this
idea still lacks either the motivational or the degree of self-confidence factors of the person who
is giving trust, which were considered in a later study, it embraces the basic important notions of
trust.

2.2 Overview of the Human Factors Engineering Literature

So far, it has been shown that trust is a multi-factorial concept, whether using the
dictionary, speculation (Barber, 1983; Rempel et al., 1985; Zuboff, 1988), or our own
expectation. To apply the studies of trust in a sociological context to the human-machine
environment, we may need some transformation or different interpretation from the human-
human environment. While many studies (e.g., Larzelere & Huston, 1980) have justified the use
of measurements using rating scales, it is also obvious that different measurement schemes, (e.g.,
percentage of time that operators used in automatic controllers, and frequency of monitoring
activities) should be developed to predict an operators' actions in a human-machine interaction
environment. There have been only a few studies of trust from this perspective. In this section,
these studies will be summarized to establish the analogy from trust in automation to trust within
the IW environment.

2.2.1 Supervisory Control and Automation

Automation has played an important role in supporting human and system performance in
complex modem systems, such as in those found in aviation and process control settings.
Automation technologies have relieved the burden on the human operator to perform under
difficult or dangerous physical conditions and have also augmented human abilities to gather
information, such as providing a non-destructive method for aircraft inspection (McMaster,
Mclntire & Mester, 1986) and autopilot systems (McClellan, 1994). The existence of benefits
from the introduction of automation technology is undeniable. In short, automation technology
provides us a convenient and economical way of living.

However, this is not the case in industrial applications, where a sophisticated
environment generates requirements for broad human operator activities to support or control the
automated processes. The advent of automation has changed the role of the human operator from
that of performing direct manual control to that of managing different levels of computer control.
Functions are often automated within the current available technology and economical
constraints without considering or defining the human operator's role as a subsystem (e.g.,
Bainbridge, 1983). Thus, human operators are left to assume the role of a supervisory controller,
interacting with the system through different levels of manual and automatic control (Sheridan &
Johannsen, 1976). Therefore, the human operator must understand how to interact with system
computers, how the computers work, how to respond based upon the output from computers, and
how and when to intervene in the process if the process fails. Many suggestions for distributing
and allocating a variety of system functions across the two essential subsystems, automation and
human operators (Levis, Moray & Hu, 1994), have been made to improve the overall
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performance of human supervisory controllers (see Sheridan, 1992, 1997, for details). These
range from ensuring stimulus-response compatibility to developing an internal model of the
human operator (Kantowitz & Campbell, 1996).

Sheridan (1980), and Sheridan, Vamos, and Aida (1983) emphasize the importance of
human trust in automation as playing a key role in determining the level of a human operator's
reliance on and the degree of intervention in automation and appropriate use of automation (see
also Parasuraman & Riley, 1997). Although those research projects concentrated on human trust
in automation based on the general understanding of supervisory control tasks, the importance of
the trust concept is applicable and has been applied to other domains, such as computer
supported cooperative work (Jones & Marsh, 1997; Christianson & Harbison, 1997), decision
making in management (Lerch & Prietula, 1989), medical diagnosis expert systems (Moffa &
Stokes, 1996) and also computer security problems (Beth, Borcherding & Klein, 1994).

2.2.2 Models of Trust

Sheridan (1980) introduced the idea of the importance of human mystification with (and
misplaced trust in) automation as one of the seven factors in the alienation of people from
technology. Based on the sociological definitions of trust described in Section 2.1, Muir (1994)
constructed a model of human trust in automation by incorporating the dimensions of trust
proposed by Barber (persistence of natural laws, competent performance, and fiduciary
responsibility) and three more dimensions of trust (predictability, dependability, and faith) from
Rempel, Holmes, and Zanna (1985). According to Muir's interpretation, all three of Barber's
(1983) meanings of trust seem applicable to the human-machine relationship and become a basis
for the framework. Thus, Muir's work, if taken as a definitive reference, forms the first
"transition" of the concepts of trust in human-human relationships to human-automation
relationships. Muir's work, in fact, suggests that this is an identity-transform, (i.e., that the
human-human trust concepts extend directly to the human-automation relationship case). Muir
(1994) also identified one of Barber's aspects of trust, technical competent performance, with
Rasmussen's (1983) taxonomy of behavior: skill-based, rule-based, and knowledge-based
behavior; this relationship is shown in Table 2. 1.

Table 2.1 Association of Barber's Technical Competent Performance to Rasmussen's Taxonomy

Barber's technical competent performance Rasmussen's taxonomy

Everyday routine performance Skill-based
Technical facility Rule-based

Expert Knowledge Knowledge-based

Interpreting Rempel, Holmes, and Zanna's (1985) model as a hierarchical stage model,
able to account for changes in operators' trust as a result of experience on a system, where trust
develops over time, Muir produced a framework by crossing Barber's (1983) dimensions of trust,
with Rempel et al.'s (1985) framework; this crossed relationship among these various
dimensions is shown in Table 2.2.
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Table 2.2 Muir's Framework for Studying Trust in Supervisory Control Environments, Produced by
Crossing Barber's (1983) Taxonomy of Trust (Rows) with Rempel, Holmes, and Zanna's (1985) Taxonomy of

the Development of Trust (Columns). Adapted from Muir (1989).

Basis of Expectation at Different Levels of Expertise

Dimensions from Dynamic dimensions from Rempel et al. (1985)
Barber(1983) Increasing time
Expectation Predictability Dependability Faith

(of acts) (of dispositions) (in motives)
Persistence

Natural physical Events conform to Natural is lawful Natural laws are
natural laws constant

Natural biological Human life has survived Human survival is Human life will survive
lawful

Humans and computers Human and computers Humans and computers
act "decently" are "good" and "decent" will continue to be

Moral social by nature "good" and "decent" in
the future

Technical competence j's behavior is j has a dependable j will continue to be
predictable nature dependable in the future

Fiduciary responsibility j's behavior is j has a responsible j will continue to be
consistently responsible nature responsible in the future

In Rempel et al.'s (1985) framework, predictability is the factor dominating early in a
relationship, dependability dominating later, and faith dominating in a mature interpersonal
relationship. Muir suggested a hypothetical trust model for complex systems:

Ti = Ei (Pj) + Ei (TCP,) + E, (FRy)
= Bo + BIXI + B2X 2 + B 3X3 + B4XKX2 + B5XIX 3 + B 6X2X3 + B7XIX 2X 3

Where i = individual holding the expectation to recognize explicitly that trust,
j = referents (complex system),
Bo_7 = parameters,
X, = P (persistence),
X2 = TCP (technically competent performance), and
X3 = FR (fiduciary responsibility).

That is, trust (T) is the expectation (E) held by a person (human operator) of a system (i)
of the persistence (P) of the natural and moral orders, and of technically competent performance
(TCP), and fiduciary responsibility (FR) from a partner, referent, (j) of the system and is related
to objective measures of these quantities and the various interaction effects.

In addition to providing a broad theoretical framework for studying trust, Muir and Moray
(1996) also conducted two experiments which contribute to an understanding of trust between
humans and machines, using a simulated pasteurization plant which was controlled by either
manual or automated controllers. The process, displayed on a visual display terminal in a mimic
diagram, showed the overall flow of milk pasteurization to assist the operator's understanding of
the process. There were two important automatic subsystems for controlling the process in these
experiments: the pump subsystem, and the heating subsystem. The former controlled the
level/amount of raw material flowing into the process to be pasteurized, while the latter defined
the amount of heat required to pasteurize the milk. These subsystems could be controlled either
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by manually typing the target pump rate/amount of heat applied to the milk or .by engaging an
automatic mode. The automatic mode reset the pump rate to match the flow rate of milk into the
system and reset the heat transfer rate to keep the temperature of milk within the predefined
range. The information available to the human operators through the mimic diagram of the entire
pasteurization plant was in digital form and indicated the level of pumping and heating rate for
the pumping and the heating subsystems, respectively. The display did not provide any decision
alternatives. After experience in controlling the plant with whichever strategy they chose,
operators were asked to rate their trust in automation, in general.

Two fundamental hypotheses were made for the experiments:

1. As the level of human operator's trust increases the operators would engage in the automatic
mode more, measured by the percentage of the time engaged in the automatic mode.

2. Also, as the level of human operator's trust increases, the operators would monitor the
automation less.

The first experiment failed to show a strong relationship between trust and the percentage
of time that operators used the automatic controller, but still demonstrated the operators' ability
to generate subjective ratings of trust. The reason why it failed was that the human operators
engaged in extensive manual control to maximize the output performance. In other words, they
showed a ceiling effect in which the human operators committed to control the automated
systems in manual mode only (almost 100% of time). This was probably due to the reward
structure based on the performance, in which the human operator who performed the task with
the most output was promised to be rewarded. With the consistent preference for manual control
(ceiling effect), the assessment of the relationship between operator's trust in and the percentage
of the time that operators used the automatic controller became meaningless.

In the second experiment, one of the automated subsystems, the heating subsystem, was
changed to allow only automatic mode operation while the other subsystem, the pump
subsystem, was controllable in either mode. Thus, the human operators were not allowed to
intervene with the heating subsystem. However, the automated heating system was so highly
reliable that the human operator's task was to monitor the automated system.

The second experiment showed a strong positive relationship between trust in the
automatic controller and its use of the feedstock pump, and an inverse relation between trust and
monitoring. That is, as the level of the human operator's trust increased, they used the automatic
mode more than manual mode and were less occupied with automation monitoring activities.
More importantly, it seems that the reason why they failed in the first experiment and were
successful in the second was because of the increased specificity of the trust rating. As opposed
to generating an overall trust measure in the feedstock pump, operators were instructed to
generate their trust in a specific object, i.e. automatic controller of the feedstock pump. Two
conclusions from these experiments are that operators are able to generate subjective ratings of
their trust in automation and that trust ratings are correlated with specific characteristics of
automation which were defined by Lee (1992).
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Rempel et al. (1985) describe their model as a hierarchical stage model, "but only in the
sense that we suspect that there is a developmental progression in terms of the time and
emotional investment required to establish each component and in terms of level of attributional
abstraction each demands" (p. 98). They found faith to be the most important aspect of trust in
close interpersonal relationships. Applying Rempel et al.'s (1985) model of trust between
humans, Muir and Moray (1996) found results consistent with Rempel et al. (1985), in that three
characteristics (predictability, dependability, and faith) were fundamental attributes of human
trust and were developed over time. Muir and Moray's (1996) result, however, also showed that
faith was a better predictor of trust, early in a relationship, but not late. Recall the finding from
Rempel et al. (1985) that faith is the important factor late in a relationship. This finding seems to
represent a difference between human-machine relationship and the human-human relationship,
even though Rempel et al.'s dimensions of trust in interpersonal relationships has direct
implications for human-machine settings. As Lee (1992) pointed out, this must be because the
initial instructions regarding a machine provided to human operators is "its intended use." In
human relationships, on the other hand, it may take years of experience to understand a human
partner's intention and to develop faith in the relationship. It might suggest that the human
operator's trust toward automated systems may tend to develop very rapidly toward faith, or,
perhaps that a human operator may start at a higher level of trust when dealing with automated
systems than when dealing with people. Faith, then, should be redefined in operational terms
rather than interpersonally. Thus, faith in the human-computer environment seems to be
compatible with the basic, generalized, and somewhat ambiguous trust in automated systems,
which is one of the expectancies classified by Barber (1983).

Following the groundwork laid by Muir, Lee (1992) extended Muir's work to investigate
various effects of system failures. He used Muir's model of trust and proposed dimensions of
trust and the relationships between the different dimensions of trust.

Table 2.3 shows a comparison between Lee's and others' dimensions of trust. According
to Lee, four dimensions of trust are defined and matched with other sociological definitions of
trust, rather than counter-balanced against each other in an orthogonal manner as Muir did with
Barber's and Rempel et al.'s dimensions (shown here in Table 2.2). The first dimension is the
foundation of trust, representing the essential assumptions of natural and social order that makes
it a cornerstone for other dimensions of trust. Also, this dimension of trust corresponds exactly
to the persistence of natural laws described by Barber (1983). The second dimension of trust,
performance, describes the expectation of consistent, stable, and desirable performance or
behavior. The third dimension, process, is characterized as depending on an understanding of the
underlying qualities or characteristics that govern behavior, such as dispositions or character
traits. In human-machine interaction environments, this would be a control algorithm or a data
reduction method that controls how the system behaves. The final dimension of trust, purpose,
rests on motives or intents. However, a machine's motives or intents are the reflections of
designers' intentions or purposes in creating the system. This classification of the dimensions of
trust seems to lead to the conclusion that machines or automated systems are easier to trust.
Before making a hasty conclusion, we may have to consider Rotter's dimensions of trust which
derive from specific and generalized notions of expectancy. Regardless of the specific
expectancy, we, as human beings living in the '90's, have experienced all variety of automation
systems, ranging from a trivial system such as automobile's cruise control system to a very
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complex system. Therefore, we may tend to regard automated systems with a certain amount of
trust in advance, before even dealing with the system. These opposing viewpoints will be
discussed later along with Muir and Moray's (1996) results.

Table 2.3 Proposed Dimensions and Relationship Between the Different Dimensions of Trust. Adapted from
Lee (1992)

Lee (1992) Barber (1983) Rempel, Holmes, and Zuboff (1988)Zanna (1985)

Foundation Persistence of Natural Not applicable Not applicable
Laws

Performance (consistent, Technically Competent Predictability Trial-and-Error Experience
stable, etc.) Performance
Process (understanding Not applicable Dependability Understanding
behavior)
Purpose (understanding Fiduciary Faith Leap of Faith
intent) Responsibility

To investigate the dynamic characteristics of trust, Lee (1992) conducted an experiment
with a structure very similar to the one used in Muir's experiment. In addition to the several
characteristics which were investigated in Muir's, such as the effects of magnitude of error,
effects of types of error (constant vs. variable), two different types of error were considered here;
transient, and chronic faults. Transient faults are considered as sudden irrational behaviors of the
machines. In these experiments, transient faults were deliberately programmed to appear only
once. Chronic faults, on the other hand, are regarded as eventual mechanical, automation failures
and happened throughout a trial. When the faults occurred, the actual automated system failed to
reach its requested rate whether controlled by the operator or the automatic controller. Fault
magnitudes were predefined at four levels (15%, 20%, 30%, and 35%). The operators' levels of
trust were measured in response to a questionnaire, using a subjective rating scale such as was
used by Muir (1989). These questions were intended to ask how the operators felt about the
system's characteristics (predictability, dependability, and faith), as defined by Rempel et al.
(1985). These questions were (Lee & Moray, 1992):

1. To what extent can the system's behavior be predicted from moment to moment?

2. To what extent can you count on the system to do its job?

3. What degree of faith do you have the system will be able to cope with all system's states
in the future?

4. Overall, how much do you trust the system?

As shown, these are very direct questions to the operators about their feelings concerning
the overall system. Although Lee (1992) himself realized that the low degree of specificity about
the system being rated for trust was the reason why Muir (1989) failed to show the relationship
between the human operator's trust and the automation usage, he used very generalized
questions.
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Lee (1992) found a mathematical model of trust using an autoregressive moving average
vector form, as follows:

Trust (t) =OITrust (t-1) + AlPerformance (t) + AlkPerformance (t-1) + A2 Fault (t) + A2403Fault
(t- 1) + a(t)

Where
t : time subscript
A,1 : The weighting of system performance
A2 : The weighting of the occurrence of a fault

4 :Autoregressive moving average vector form time constraints
a : random noise perturbation

He found out, first, that operators were able to maintain their high level of overall
performance, despite the effects of a fault in the automatic controller. As might be expected,
there was a loss of trust in automation resulting from faults in the automatic controller, and the
recovery of trust was slower than recovery in performance. Lee called this "inertia" (we called
this a "hysteresis loop" in the last report). This result is consistent with Lerch and Prietula
(1989), who examined the effects of attributional qualities of a source (i.e., the pedigree) on
human decision making in traditional financial management decision problems. They also found
that it was more difficult to recover trust after a failure, given as wrong advice, than to build trust
initially. The level of performance measured by the level of confidence in the decision the
subjects made deteriorated after the wrong advice, and never returned to the level of performance
where it was before the wrong advice, even at the end of trials. Second, the magnitude of the
automatic controller's error had no differential effect on overall performance but the change in
trust was positively related to the magnitude of the error. Third, a decrease in trust of the
automatic controller caused no decrease in its use. Lee and Moray (1994) hypothesize this may
have been a function of the level of the operator's self-confidence. Trust, paired with self
confidence, may provide a better explanation for operator's use of a decision aid, after it fails,
than trust alone. The use of an intelligent system seems to depend on the human's perception of
their own capabilities, as well as their perception of the systems performance. Thus, combining
these qualities seems to lead to better joint performance.

These results have potentially significant implications for the 1W case. If an adversary
can cause loss of trust (e.g., by perturbing system information), he can effectively remove the
human from system control for some meaningful length of time.

2.3 Characteristics of Trust

In the previous section, we have reviewed some definitions and models of trust from both
sociological and human factors engineering perspectives. These definitions and models of trust
contain many aspects, suggesting trust is a multi-factorial concept. Now, we must go beyond the
suggested description of trust models that is usually applied to both human-human relationships,
and human-machine interaction, to eventually apply trust concept into 1W domain. Specifically,
we need to explore the possible characteristics of trust that may contribute to change in human
behavior.
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2.3.1 Characteristics of the "Other Actor"

Sheridan (1988) addressed a number of meanings of the term trust, examining how trust
affects the operator's use or nonuse of automation features when the occasion arises, and
suggested seven attributes of trust, or as he pointed out "perhaps these are better stated as causes
of trust," in command and control systems. These are described below:

1. Reliability: This implies a system of reliable, predictable, and consistent functioning.
Almost all definitions addressed in the previous section placed this attribute as the first step
toward development of trust. A person who behaves in a consistent manner will be trusted
easily. Further, Sheridan (1988) emphasized this attribute as "conditioned to trust" under
which those events which happened before in particular circumstances will occur again in the
future. Therefore, the attribute has the same meanings as Rotter's (1971) term "specific
expectancy." As Rotter (197 1) suggested, people can generalize their expectancy from similar
past experiences. Muir and Moray's (1996) experiments supported the importance of
reliability affecting the level of trust in automation, and stated that trust is affected by the
error magnitude. The characteristics addressed by other researchers which have a similar
connotation are predictability, confidence, persistence, trustworthy, and expectancy.

2. Robustness: Robustness supports expectations of future performance based on capabilities
and knowledge not strictly associated with specific circumstances that have occurred before.
Robustness can be stated as "meaning demonstrated or promised ability to perform under a
variety of circumstances"(Sheridan, 1988). It is the same as Barber's and Muir's concepts of
generalized competence

3. Familiarity: Often a person confronts a situation or an object with a high degree of novelty,
but still feels familiar with and sometimes comfortable to deal with, the situation. Often
caused by either a naturalistic or inherent cultural expectation, familiarity may not cause any
exploratory risk-taking behavior to diagnose the situations, or to identify objects whether new
or familiar. Consequently, it may induce biased decision-making. However, the fact that
familiarity is not based on any scientific knowledge or expertise and tends to be inherited
from those who have cultural similarity with us, the person who is confronting an unfamiliar
or unanticipated situation / object will be very vulnerable to deception. Unlike other
industrial settings where unanticipated, and so unfamiliar, events are sometimes confronted
by human operators, human operators in military command, control, communication and
information system (C31) may not have been exposed and trained to any unanticipated events.
The following quote from Sheridan (1992) gives us a good understanding of how naive the
human operators in the C31 systems can be for any unfamiliar events.

...The author has observed some very limited military "war games" and has
noted an interesting tendency to avoid the unexpected and to have the "bad guys"
behave in rather stereotypical ways, the rationale being that the commanders
cannot learn proper procedure and doctrine if events are too chaotic." (p. 351)

Familiarity will be discussed later, in more detail, from the perspective of the ecological
interface design in conjunction with "Explication of Intention."

4. Understandability: Understandability is neither totally the same as nor completely different
from familiarity. Familiarity does not guarantee understandability, or vice versa. The
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construct of understandability is equivalent to developing an appropriate mental model,
possibly with the aid of familiarity. In designing a machine to aid a human operator,
understandability usually is affected by the degree of transparency of the system in which the
operator can "see" through the interface to the underlying system. Opaque machines or
interface media will prevent the operator not only from trusting the machines, but also from
engaging in problem-solving activities in cases of warnings or mishaps. Thus, any means
through which an adversary could corrupt the graphical user interface or other user interface
functions, so as to confound the user's ability to understand a system, would lead to distrust.
For example, corruption of "Help" files could cause such distrust.

5. Explication of Intention: Instead of leaving a person in a position where the covert meanings
have to be discovered and understood from the system's behavior, this attribute allows people
to trust others over those who just perform tasks. However, current technological
improvements in the design of intelligent computers are not yet well enough developed to
allow human operators to communicate using higher level intentions. Unless we develop
intelligent machines which can specify their intentions for future actions outright, we will
have to rely on currently available technologies (e.g., in the form of symbols, short
statements, or a combination of both which are pre-programmed by system designers and
often are not well suited for transferring their intentions to the human operators). Therefore,
we are often forced to trust (or not to trust) based on a symbolic medium through which one
produces effects and on the basis of which one derives an interpretation of "what is
happening." Zuboff (1988) examined this conflict of using symbolic media instead of oral
presentation. This characteristic will be discussed later in more detail in conjunction with
"Familiarity" from the perspective of the ecological interface design.

6. Usefulness: In a sociological context, this attribute is the same as the notion of motivational
relevance, which is also the same as Webster's third category--an equitable right or interest.
From a human factors perspective, on the other hand, usefulness of data or machines means
responding in a useful way to create something of value for operators, eventually developing
into trust. In fact, one branch of decision theory, "utility theory," is explicitly based on such
values. This, however, raises a question: does usefulness of data ensure the quality of
decision making, or make human operators dependent on the decision aids, eventually
trusting them? In other words, does data value help decision performance, induce trust, or
both? Tversky and Kahneman (1974) argued that people tend to behave heuristically rather
than using the estimated utility. Humans also tend to express overconfidence for positive-
outcome events and the results revealed a curvilinear relationship between base rates (in
probability) of possible outcomes and overconfidence (Pulford & Colman, 1996). Klein
(1997) also argued that humans tend to use recognition-primed decision making processes
rather than evaluating the utility of all possible outcomes. The RPD model is an example of a
naturalistic decision making model which is claimed to be the way people use their
experience to make decisions in the context of a task. In his argument, Klein (1997) claimed
that the function of the RPD model is to describe how people can utilize their experience to
make good decisions without comparing the strengths and drawbacks of alternative choices
of action, and provides one of the few approaches to understanding human decision making
which does not focus on evaluating trade-offs among discrete possible choices or actions.
Thus, the model does not reflect any metacognitive processes (i.e., attentional resources and
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memory) which are important components of utility theory. This does not deny the
usefulness of utility theory as a concept but rather questions how such a concept is used in
practice. These effects may also be coupled to the relevance of the data or information.
Humans will clearly disregard the presence of data they consider irrelevant, and if this is the
context in which heuristic behaviors occur, it is quite understandable. But if not, then the
question of the value of information in decision making becomes less certain, and this has
important implications in the 1W case.

7. Dependence: Sheridan (1988) argued that trust should precede dependence rather than follow
it. Despite this seemingly rational deduction, we can find many situations in which humans
totally depend on the systems even without developing trust (i.e., people trust automation in
such situations because they are not confident in their own skills and see no clear alternative
to trusting the system). It seems clear that this attribute plays a major role in developing trust
and in determining the degree of human intervention in the system. The causal relationship
between dependence and operator's trust, however, is still ambiguous.

2.3.2 Characteristics of Data Communicated

We have been discussing the major factors determining the level of human intervention in
a human-automation interaction environment. To intervene within the system, human operators
must have knowledge, skills and awareness of a surrounding environment that changes
dynamically. Increased awareness of the surrounding environment is accomplished by watching
or monitoring automation through the displays or interfaces provided, which is the only way for
human operators to interact with the system. Before our society acknowledged the importance of
information as a medium that can lose its value or integrity, the displays were commonly
regarded as simple devices representing the behavior of the machines with which human
operators were concerned. Realizing the potential for information degradation or corruption by
other individuals or parties, however, raises several questions from a human factors perspective.

1. How can we detect abnormalities of degraded or corrupted information?

2. How much do we trust the displays, as well as automation?

3. What kind of data do we inherently trust?

When we measure a human operator's trust in automation, we already hypothesize in
advance that the level of trust in automation is the same as the level of trust in the information
presented. This provides us with a single methodology to measure a human operator's trust in
automation without questioning the human operator's ability to separate the data from its source.
However, this is not the case in the 1W environment. The whole C31 system is by nature subject
to malevolent interference by a powerful adversary. Data can be corrupted or degraded by
adversaries, and consequently, may induce decision making errors.

These questions imply that we should define the role of displays as independent agents
rather than as part of the entire system. Displays can create or produce faults either through
manipulation by other individuals or through the mechanical malfunction of the displays
themselves. Also, remote sensors collect and fuse data from objects in the real world with which
human operators actually deal. Will knowing the precise level of the human operator's trust in
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the objects or the automation allow us to assume that the level of their trust in the data carries the
same value? Suppose the level of human operator's trust in automation is 90%. Does that apply
to the displays, too? In other words, we are questioning the human operator's ability to separate
his/her level of trust in displayed data from his/her level of trust in the underlying automation
(typically, software processes).

We have found only one study (Muir & Moray, 1996) which investigated the effects of
display faults in conjunction with automation faults (Muir labeled these "control faults"). Three
types of control failures ("exact," "constant fault added," "variable fault added") were
manipulated, in conjunction with three types of display failures ("honest," "constant fault added,"
"variable fault added"). While the "exact" control property would accomplish the requested
target rate feed either from automatic or manual mode, the "honest" display property showed the
information to human operators, regardless of its quality. Thus, it presented the information even
if it contained faults caused by "control" properties (constant fault added, variable fault added).
Figure 2.1 represents the way in which human operators interacted with automation in the
experiment.
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Figure 2.1 Conceptual diagram representing the interactive process display interface between the human
operators and the automated system used in Muir and Moray (1996).

Muir concludes that a human operator's trust in displays was affected by both the control
and the display manipulation, but that the effects were not additive. The result shows that the
honest display was trusted over the two displays that had the constant or variable faults added,
across the various types of control properties. The two other displays were trusted nearly equally,
although the constant fault display was trusted slightly more than the one with a variable fault
added. Common sense seems to be enough to understand this phenomenon, in which bearing
constant fault presumably shows more consistent behavior than displaying variable faults.
Parasuraman, Molloy, Mouloua and Hilbum (1996), however, produced results contradictory to
Muir's results. Parasuraman et al. (1996) investigated the effects of automation reliability and
consistency on the human operator's detection rate of automatic failure. They discovered that the
monitoring performance of the variable-reliability group was significantly higher than that of the
constant-reliability group. Of course, the absolute level of automation reliability also affects
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monitoring performance. We may infer from these two results that automated systems with
constant reliability may associate with low monitoring performance and then overtrust the
automated system. This, then, is a typical example of miscalibration of trust-complacency.

Here, the result from Muir and Moray (1996) shows an interesting potential characteristic
in which human operators rate their trust in two automated subsystems. The human operators
calibrated their trust very well according to the different types of faults introduced. In the
condition in which both agents (control and display) behaved perfectly ("exact" and "honest,"
respectively), the level of the human operator's trust was rated nearly perfect (100%). Among
the nine experimental conditions tested (3 levels of control fault properties by 3 levels of display
fault properties), two conditions appeared to be exactly the same to human operators: exact
control with constant (10%) display fault added, and constant (10%) control fault added with
honest display. With the onset of a constant display fault (C4 in Table 2.4), the level of human
operator's trust in the control remains virtually unchanged, while the level of trust in the display
reduces dramatically (approximately 50%).

These results suggest that the human operators possibly were aware of the source of the
faults introduced so that they could calibrate their trust levels easily. With the onset of a constant
control fault (C2 in Table 2.4) from the perfect condition, on the other hand, the level of human
operator's trust in the control reduces in half, from approximately 100 to 50, which shows
operators' good performance in calibrating their trust level. With the same condition (CA)
however, the level of human operator's trust in the display also reduces from approximately 100
to 60. This situation implies either that the human operators were unable to detect the original
source of the faults, which is the opposite of the analysis of the previous results on human
operator's level of trust behavior, or that the human operators just blame the display
undeservedly. Thus, the human operators showed poor performance in calibrating their trust in a
display when constant control faults are introduced.

Table 2.4 Selected Conditions Used in Muir and Moray (1996)'s Experiments

Control Property

___________________Exact Constant Fault Added
Perfect behavior Constant control fault added

Display Honest ________________(10%)0 (C 2 )

Property Constant Constant display fault added Combination of two constant fault
Fault added 110%00/) (C4) added

The results suggest that the human operators reduced their level of trust in a display even
though the detected (or at least, presumed to be detected) faults came from an automation
malfunction, not from a display malfunction. This characteristic of human behavior might be
explained using the concept of "complacency" (Parasuraman et al., 1993). The concept of
complacency asserts that the level of a human operator's trust in automation, when viewed
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objectively, is higher than it perhaps should be. Therefore, human operators do not always
disengage and take over the automation when it goes wrong, but rather, still expect the
automation to perform its function. This situation, however, is somewhat different from the
conventional concept of complacency, in which the human operator's trust changes
proportionally, if not appropriately. Not only did operators fail to calibrate their trust across two
different subsystems, but also they were biased to lower their trust in only one system (displays),
which could be characterized as the medium which presented the measured data to the human
operators. In short, the human operators showed what could be called "hardware complacency"
rather than "software complacency."

This result has two direct implications for 1W studies. First, if the human operators
regard the display unit as an independent agent performing as part of the whole process, this
result might represent the human operator's ability to separate the data from the automation that
produces the data. Hence, they can remain separate during fturther processing by human
operators. Also, the result might imply that when the automation performs poorly, human
operators tend to reduce their trust level, or get suspicious of the data communication system
rather than the actual automatic machine performing the jobs. Since Muir and Moray (1996) did
not analyze the situation, there is no statistical assurance for this assertion. However, based on
the graphs reported in the paper, it is not difficult to see the difference.

Having completed our discussion of the characteristics of data communication between
the automated system and human operators, we now turn our attention to a preventive method
based on ecological interface design. According to Vicente and Rasmussen (1992), the degree of
.unfamiliarity or novelty can become a basis to classify events in complex human-automation
interaction systems. They classified three anchor points along the familiarity continuum from the
perspective of both human operators and designers.

1. Familiar events are routine in that human operators experience them frequently. As a result
of a considerable amount of experience and training, human operators have acquired the
skills required to deal with these events.

2. Unfamiliar but anticipated events occur infrequently, and thus, human operators will not have
a great deal of experience on which to rely. However, the events have been anticipated by
plant designers, who have built in means to deal with them (e.g., procedures, decision support
systems, automatic controllers, etc.). These anticipated solutions provide human operators
with the help they need to cope with this class of events.

3. Unfamiliar and unanticipated events are also unfamiliar to human operators because they
rarely occur. Unlike the previous category, however, the event has not been anticipated by
designers. Thus, human operators cannot rely on a built-in solution but must improvise one
themselves.

Since it is important to detect abnormalities originated by the enemy force, designing an
interface to overcome or minimize the effect of unfamiliar and unanticipated events becomes a
critical issue. One way to accomplish this is using ecological interface design, which has been
given much attention recently (Vicente, 1992a; 1992b; 1996). The concept of ecological
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interface design has a common ground with other interface design philosophies. The
fundamental difference from others is that it embraces decision making models which
concentrate on the human behavioral and representational characteristics. The promise that these
decision making models share is that humans tend to make decisions based on what they
recognize from the environment (e.g., the RPD model), not based on what they think and deduce
from the association between recognition and their mental models. Humans are apparently better
at recognition-primed decision making than at deduction from mental models. Of course, this is
not to say that humans depend solely on recognition for decision making. A few studies (e.g.,
Hammond, Hamm, Grassie & Pearson, 1987; Woods, 1988), however, have shown that human
operators' performance was generally better when they relied on perceptual characteristics of the
display than on functional properties of the process being controlled.

Another useful aspect of ecological interface design for the 1W domaln is that it can
provide human operators with various viewpoints, in a hierarchical level, for the process or
display being controlled. The number of viewpoints is totally domaln-specific. Conceptually,
complex systems are represented with a multiple level hierarchy, called an Abstraction Hierarchy
(Rasmussen, 1985). Each level in the hierarchy consists of its own representation of the complex
system. For example, Rasmussen (1985) found five levels of hierarchy to be useful for the
description of the control systems being processed, as illustrated in Figure 2.2 and described
below.

Functional
Purpose

Abstract
Function

_Generalized Huma
World Model Functions []Operator

Physical
Function
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Forms

Figure 2.2 The system properties considered in human-machine interaction can be described at various levels
of abstraction, representing the physical implementation and functional purpose in varying degrees.

1. Functional Purpose: Highest level of abstraction that translates the system's design
purpose.

2. Abstract Function: Represents the intended causal structure of the process in terms of
mass, energy, information, or value flows.

3. Generalized Function: Consists of the fundamental functions that the system is
designed to achieve.
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4. Physical Function: State of the system components that are designed to implement
the generalized functions.

5. Physical Form: Physical instantiation of the system.

Each level represents its own understanding of the system being controlled. Having this
abstraction hierarchy ready to assist them, human operators can more easily cope with unfamiliar
and unanticipated events. In the previous section, we have discussed "Explication of Intention"
as a characteristic of the "other actor." In short, the fact that humans can develop and calibrate
their trust with ease when they communicate "well," also applies to the human-automation
interaction environment. By this we mean that when we have various methods of
communicating with automation, we should have better understanding, situation awareness, and
manipulation of complex systems. Each level in the hierarchy, a way of representing the
complex system, can match the human operators' level of intention, such as skill-, rule-, and
knowledge-based behavior. Especially, the Abstraction Hierarchy is a way of supporting
knowledge-based behavior. Generally, ecological interface design supports performance at all
three levels of behavior-skill-, rule-, and knowledge-based-and use the Abstraction Hierarchy
to support knowledge-based behavior in the face of unanticipated events (Vicente, 1990).
Ashby' s (1956) Law of Requisite Variety states that complex systems require at least equally
complex controllers. Human operators cannot possibly control complex systems through a
simplified interface design. In this perspective, the ecological interface design method will
enable us to design complex systems for human operators to better understand and cope with the
complex human-automation interaction environment.

2.3.3 Dynamics of Trust: Overtrust-Trust-Distrust-Mistrust

2.3.3.1 Calibration of Trust and Mistrust:

There are not equally competent machines; even different functions of a single machine
are not equally competent, and certainly are not flawless. Thus, operators should learn how to
adjust themselves within the given environment so that they neither distrust the good nor
overtrust the poor quality of automation. 'Muir (1994) showed how an operator's trust and
consequent selections of automatic or manual control mode interact with the quality of the
automation to affect joint system performance.

Even though an operator's trust and the quality of the automated systems are described as
each having two distinctive extreme states, these concepts provide us with a good understanding
of the kinds of effects that occur when trust and the quality of automation are miscoupled. Inter-
dependencies between informational quality and operator's views of trust and their allocations to
or away from automation are shown in Table 2.5. Operators who calibrate their trust well (cells
IL MI), on the one hand, will know when to use and not to use automation; thus they will optimize
joint system performance. Specifically, their appropriate trust, coupled with competent and
reliable automation, will show them when and where to change their attention to compensate for
the potential poor performance of less competent automation. Poorly calibrated operators (cells
II1, IV), on the other hand, tend to reject automation even when it shows good performance (cell
IV), and also to accept poor automation (cell II). This situation may demand levels of operator
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resources or abilities beyond those they are able to give, consequently preventing them from
tackling required resource-intensive functions in the system and often causing "human errors."
Further, Muir (1989) suggested four possible ways to improve the calibration of trust toward
decision support systems, in particular, see Muir (1989) for detailed discussion:

9 Improve the user's ability to perceive a decision aid's trustworthiness
* Modify the user's criterion of trustworthiness
* Enhance the user's ability to allocate functions in a system
* Identify and selectively recalibrate the user on the dimension(s) of trust, which is

(are) poorly calibrated.

Table 2.5 How the Operator's Trust In and Use Of the Automation Interact with the Quality of the
Automation to Influence System Performance. Adapted from Muir (1994).

Operator's trust and allocation Quality of the automation
of function 'Good' 'Poor'

0I) (11)
Trusts and uses the automation Appropriate trust, False trust,

Optimize system performance Risk automated disaster
(IV) (Il)

Distrusts and rejects the False distrust, Appropriate distrust, optimize
automation Lose benefits of automation, system performance

increase operator's workload, risk
human error

Note: The cells illustrate appropriate trust, appropriate distrust, and the two errors of mistrust (false trust and
false distrust).

Unfortunately, we seem far away from unblemished automation, which would have
perfect reliability and performance, generating appropriate decision alternatives and no false
alarms. False alarms have been especially acknowledged as a major contributor to the human
operator's miscalibration of trust. Cur-rent technology provides us with machines and computers
which have relatively high degree of reliability. When false or inappropriate alarms occur,
however, the human operators tend to become suspicious about the truthful states of the false
alarms, which in consequence, might in the future be ignored and cancelled. This has been
termed the "cry-wolf 'phenomenon.

Sorkin and Woods (1985) provide a theoretical justification for the argument that high
false alarm rates will have serious consequences on system performance and note that human
operators of complex systems such as trains, aircraft (Bliss, 1997), and medical systems (Kerr,
1985) often turn off crucial alarm systems because of their tendency to activate without apparent
reason. This phenomenon has a very important implication for the 1W domain. In this domain,
human operators must detect abnormalities or susceptibilities displayed on their screens. Having
experienced false or inappropriate alarms associated with, for example, unfamiliar high-pitched
sound warnings, they may regard similar future signals as repeated false alarms. In a sense,
human operators would have calibrated their trust in automation (warning systems in this case),
merely enough to acknowledge the presence of warning signals. When combined with warning
systems, however, poorly calibrated human operator's trust in complex systems is likely to create
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complex human behavior. False alarms, generated by a defective warning system design
representing the crucial states of complex systems make the human operators deactivate the
warning system, consequently missing true signals.

2.3.3.2 Overtrust (Complacency):

On June 30, 1994, an Airbus A330 crashed during a test flight, killing seven on board.
The purpose of the test flight was to evaluate the performance of the aircraft's autopilot system
with an engine out, simulated hydraulic failures and unbalanced center of gravity just after
takeoff. According to the investigating committee, the crew appeared overconfident and did not
intervene in time to prevent the accident. The committee deduced that if the pilot had intervened
and retaken manual control four seconds earlier than he actually did, the crash would have been
avoided (Sparaco, 1994).

Overtrust in automation, sometimes referred to as "complacency" (Parasuraman, et al.,
1993) has been scrutinized recently. Billings, Lauber, Funkhauser, Lyman and Huff (1976)
defined complacency as "self-satisfaction which may result in non-vigilance behavior, based on
an unjustified assumption of satisfactory system state." Like other causes of human errors, it
reflects a mismatch between human capabilities and system/automation characteristics. In other
words, complacency is a construct induced to elucidate operator behavior in interacting with a
complex system and in failing to recognize that function(s) of the automation system have failed,
or that it is in a different mode than the operator believes it to be.

A high level of trust in automation could lead operators to fail to vigilantly monitor their
display and instruments, a state associated with reduced arousal. Analyses of aviation safety
reporting systems have provided evidence of monitoring failures linked to excessive trust in, or
over-reliance on, automated systems such as the autopilot and flight management system
(Mosier, Skitka, & Korte, 1994; Singh, Molloy, & Parasuraman, 1992; Singh, Molloy, &
Parasuraman, 1993a; Singh, Molloy, & Parasurarnan, 1993b). Will (1991) also performed an
experiment with reservoir petroleum engineers to determine the degree to which they relied on an
expert system to perform well analysis. Using a modified expert information system, the
engineers analyzed data on well pressure buildup problems and made decisions based on the
expert system's recommendations. The system generated not only false recommendations, but
also generated incorrect explanations to support them. The results showed that novices
expressed higher confidence ratings in their decision making using the faulty expert system
technology than those who drew wrong conclusions based upon the use of conventional hand-
calculating methods. The phenomenon experienced by novices extended to experts. The results
showed that experts were also deceived by the defective expert system, except in the case of one
expert subject. While unaware that their own conclusions were wrong, the expert subjects said
they thought they could have performed the jobs better without help from the expert system's
decision aiding function. Verbal protocol analysis from the expert subjects (obtained through
interviews after the experiment) revealed that they believed that they had sufficient knowledge
about the process and the tasks, and therefore, refused to depend on the expert system. The
experiment produced somewhat contradictory results, perhaps due to the small number of expert
subjects recruited (five).
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Then, what are the factors associated with this construct? Parasuraman and colleagues
(Parasuraman, 1987, Parasuraman et al., 1993, 1996) have studied the factors influencing the
monitoring automation, such as overall workload imposed on the operator. Under the single
automation monitoring task, human operators performed very efficiently at detecting any
automation failures, despite the fact that humans are very vulnerable to vigilance variation.
Within a multiple task environment, however, performance is degraded (Parasuraman et al.,
1993). Further, they examined the effect of consistency of automation reliability and concluded
that human operators performed better at automation monitoring with inconsistent, variable
reliability, because of the operator's lack of overreliance on automation due to the low level of
trust. In addition to these factors, they addressed some others related to complacency:

1. Information Overload: Current technology tends to condense information presented to
human operators, partly because of the economical reason, such as reduction of the number of
human operators involved in a process. Often, human operators do not have time to monitor
automation even if they overcome the limits of their monitoring capabilities.

2. Information Underload: Fused information reduces the amount of information human
operators have to process. At the same time, however, the reduced performance pressure
potentially can create a vigilance decrement associated with reduced arousal.

3. Imperfect Mental Model: Partly because of the fusion of information and the limited
information it provides, human operators experience difficulty understanding the complex
systems. With poor understanding of both the automation itself and the complex system it
controls, human operators have no choice but to rely on automation, and hence are vulnerable
when the automation fails. For instance, a typical complex system in current aircraft
automation technology, the Flight Management System (FMS), often surprises pilots with
unexpected mode transitions.

4. Impaired Situation Awareness: Having an imperfect mental model results in poor
understanding of the current system state. Furthermore, it is probably impossible to estimate
the future states of a complex system without knowing its current state. Thus, the ability to
anticipate and predict future states of system, an aspect of situation awareness, will be
impaired (Endsley, 1994).

5. Diffusion of Responsibility: Sheridan (1980) argued that "when authority and responsibility
are shared, accountability becomes diffuse"(emphasis added). Consider the multiple quality
control human inspectors on a single processing line. The second inspector probably will not
inspect as vigorously as the first inspector, resulting in less visual inspection overall. Thus,
the multiple agents involved in a system make each subsystem's roles and associated
responsibilities ambiguous. Even when a small error develops into a disastrous one, it is
difficult to find its fundamental source to blame.

6. Cue utilization based on salience: Weighting of information sources may reflect the ability to
capture attention rather than the decision making value. Classical decision making theory
based on utility emphasizes that cues have to be weighted based on their value toward total
decision-making value to optimize a decision making, not based on salience. Unfortunately,
people are often influenced by cue salience.
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So far, we have been investigating how human operators develop their complacency on
complex systems and the effects of such. It seems misleading that complacency is a
psychological construct which human operators induce because of the limits of their capabilities
on monitoring automation, information processing capacity and as such. However, system and
automation characteristics also may result in a human operator's complacency. Lee,
Parasuraman, and Bloomfield (1997) suggest:

1. Observability: By this, they mean when the system provides human operators with delayed
or ambiguous feedback, the degree of human operators' observability decreases. In other
words, the degree of transparency of system can contribute to the creation of the human
operators' complacen cy.

2. Time Urgency or Criticality: Time available for human operators to make a decision and to
take appropriate actions has a major impact on creating the human operator's complacency
inducement. The less time the human operators have for a decision-making, the more
opportunity it creates human operators' complacency.

3. Automation Reliability: Automation reliability determines the number of human operator
interventions required to correct automation failures. Molloy and Parasuraman (1992)
investigated human operator monitoring efficiency depending on automation reliability in
detecting malfunctions and proved the commensurate relationship between the two measures.
As automation reliability in detecting failures increases, the human operator's monitoring
efficiency represented in the percentage time of manual performance decreases.

4. Clumsy Automation: Lee et al. (1997) argued that clumsy automation can induce
complacency by the degree to which workload peaks are heightened and workload troughs
are deepened.

5. Complexity: Because humans have both limited information processing and limited working
memory capacity, complex work domains, in which the number of interacting elements
exceeds the human operator's capacity, will induce operator complacency.

6. Limited Functional Integration: Humans must integrate the functions presented to them by
automation through the automation interface. Thus various informational elements from and
of automation require human integration.

Finally, we should point out an important aspect of overtrust in automation related to
these factors. As mentioned above, the human operator's overtrust in an automated system can
result in less monitoring activity, as well as more frequent engagement of the automat 'ic rather
than the manual control mode. The automatic control mode will keep human operators out of the
automation loop which may reduce operator's understanding of the system (impaired mental
model). Consequently, an extensive use of the automatic control mode can lead to degradation of
human operator's skill (Drury, 1992). Therefore, without confidence in dealing with the
automated systems, human operators are forced to rely more on the automation, which reinforces
their overtrust on automation. Thus, it forms a vicious cycle, as shown in Figure 2.3. How then
can we break this vicious cycle?
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Figure 2.3 Two vicious cycles on the trust continuum

2.3.3.3 Distrust:

Having completed our discussion and critique of the characteristics of trust, calibration of
trust and overtrust associated with various kinds of empirical data, we now turn our attention to
the other end of trust continuum, distrust. If distrust merely is to define one extreme end of the
trust continuum so as to be an opposite of trust (overtrust), it is not probably worth discussing.
However, both ends could exist at the same time in human operators. A person can trust another
partner on one characteristic while he/she does not trust the partner in other characteristics
simultaneously. Distrust, therefore, is not a simple construct but might coexist with other trust
elements. A common example for discussion of trust and distrust occurs in political matters,
especially in presidential elections. We have witnessed many presidential elections and political
disputes on the matter of a candidate's credibility or trustworthiness. For instance, Barber (1983)
elaborated the criticality of trust's role in politics at length, by an example of the presidential
election in '79-'80, and pointed out one of the main reasons why the Carter government lost the
election was that it lost the public trust by blaming the public for its lack of confidence while it
still managed to gain a high level of public's falth.

In human-computer interaction environments, where a human operator's main task is to
monitor automation, novices tend to be biased toward distrust. A study by Riley (1996)
illustrates this point. When two different subject groups, novices and experts, are given multiple
tasks, experts tend to initiate automation more rapidly than novices when artificial failures are
introduced into the tasks. Complete distrust of one component of automation may result in the
human operator performing those tasks manually, a situation associated with a high level of
workload and a decrease in overall performance (Moray & Lee, 1990; Lee & Moray, 1992).
Also, disengaging automation and performing tasks manually leaves the human operators little
opportunity to evaluate or reevaluate the automated system's trustworthiness, because the human
operator necessarily reduces evidence of automation failure when he/she performs tasks
manually. Consequently, the level of operator's distrust in automation remains intact. Again, it
forms a second vicious cycle, in contrast to the cycle when the human operator overtrusts
,automation (see Figure 2.3).
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2.4 Implications for 1W

This section will review our knowledge of trust, make explicit the links to 1W, and
provide a model of trust to guide applications to 1W.

2.4.1 What Do We Know About Trust?

First, we have established that the concept of trust is an internal state of the human
operator, directly accessible only by the operator providing a scaling or judgment. Second, trust
drives the operator's strategy in a task (e.g., the use of a manual vs. an automated system), which
in turn drives operator and system performance. Thus, trust, although a subjective state, has
important implications for performance in tasks where multiple strategies are possible (e.g., 1W).

Third, the trust level can be changed by both system events and operator skills. In
particular, trust can be reduced by error/failure/sabotage to the system. Thus trust, and hence
system performance, are vulnerable to system malfunctions, caused by natural or by hostile-
induced faults. Finally, the operator's level of trust does not always accord with objective truth.
This can arise from known operator biases (e.g., poor sampling, complacency time lags during
dynamic changes in trust, or poor estimation of own skills). Thus there are definite avenues of
access to an operator's trust level, which could be exploited intentionally by an enemy in an 1W
context.

2.4.2 A Model of Trust for 1W

Trust is an internal state of the human operator, but a state with proven links to
antecedents within the operator and in the task, and proven effects on strategy, performance, and
perhaps, operator well-being. Because of this structure, trust has same similarities to stress.
Stress is an internal construct based upon the operators' perceptions of themselves and their
tasks, both perceptions being influenced by, but not identical to, objective reality. Similarly,
stress can drive the actions of the operator in terms of how to cope with the task. Finally, stress
cannot be measured only with reference to externally verifiable phenomena; the operator's
perception is a required ingredient.

We have seen that the level of trust may not reflect situational realities, and we can. model
this aspect rather easily. As Luhman (1980) indicates, trust is a basic fact of social life and is the
very necessary element to "reduce complexity" in social life. He further explains that "the world
presents itself as unmanageable complexity, and it is this [trust] which constitutes the problem
for systems which seek to maintain themselves in the world." Thus, trust can be seen as that
which reduces apparent complexity; mismatches between the level of trust operators should
exhibit and the level they do exhibit come from two sources:

* Mistrust (i.e., the operators do not trust as much as they should)

* Overtrust (i.e., the operators trust more than they should)

A convenient analogy, linking mistrust and overtrust to the flow of trust from a situation
to the operator, is the flow of information along a transmission channel (see Fig. 2.4).
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Here, Tin is the true amount of trust which an objective and all seeing observer would find
in the situation. Some of this, Tlost, does not reach the operator and is lost. Examples are
monitoring failure, inadequate sampling, or mistrust due to disguised enemy action.
Additionally, some overtrust (Tadd) may be added by the operator, although it has no basis in
reality. Sampling biases, overconfidence in the integrity of an algorithm, or overtrust due to
enemy interference would all be examples of falsely added trust.

The outcome is the trust perceived by the operator, Tout. This may be larger or smaller
than Tin, depending upon the relative magnitude of Tlost and Tadd. But only a fraction of the
operator's trust, Tout, is in fact justified by the situation, Tin. This amount of shared trust, here
called transmitted trust, or Ttras, is the amount common to input and output, analogous to the
information transmitted correctly from source to destination.

Note that

Tin = Ttrans + Tlost

Tout = Ttran, + Tadd

Thus,

Ttrans = (Tin + Tout - Tlost - Tadd) / 2

From this model we can begin to locate and categorize the sources of trust, mistrust and
distrust for a given system and operator. In the end, we would hope to be able to relate these
sources to some of the dimensions of trust (e.g., Rempel et al.'s [1985] list of predictability,
dependability and faith). In an IW context we should be able to explore systematically the effects
of system changes on the levels of trust measured. It is our belief that an adequate model of the
trust concept is necessary if we are ever to predict operator's actions, strategy, and performance
from the antecedent conditions known to affect them.
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Figure 2.4 Trust transmission model

However, the model in Figure 2.4 is at too high a level of abstraction to guide the search
for the structural element of the trust concept, and hence, the ways in which trust can be defended
or attacked in an IW context. For this, we need to explore the way in which the operator
estimates trust (i.e., how does the current value of Tout arise) and how well it reflects Tin. An
obvious model here is one which examines the cues used by the operator in forming trust and
how well these cues reflect the true situation. This is the Lens model (Brunswik, 1952), shown
in Figure 2.5 as modified later by Cooksey (1996). Brunswik's Lens model is a symmetrical
framework which describes how both the environmental structure and patterns of cue utilization
collectively contribute to judgment performance. In this model, the judge combines cue
information (Xi) about the environment to make a judgment (Ys). The model represents the
classical notion of information transformation from stimulus (information presentation) to
response (judgment) in which humans process information internally to yield some functional
response based on the cues observed, which in turn, are representations of the environmental
state. Thus, the model includes not only a classical decision concept (i.e., how humans sample
and combine the cues presented to them) but also the relationship between available cues and the
true state of the environment.
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Figure 2.5 Brunswvik's Lens Model adapted from Cooksey (1996).

By analyzing a judge's cue utilization policy, therefore, we may be able to understand
how that judge has adapted to the structure of the environment. The predictability of the
environment, given a set of cues (the ecological validity of the cues) can also be assessed.
Therefore, this model allows us to assess and evaluate how well the true environment structure is
represented via a set of cues. Additionally, achievement, denoted as ra, represents how well
human judgments correspond to the actual values of the environmental criterion to be judged.
Achievement is shown in Figure 2.5 as a line connecting judgments to criterion values. Because
the Lens Model provides the means for considering the judge's adaptation to the environment,
and the degree of achievement, both of which relate to the calibration of human trust, it seems
that the use of the Lens Model approach to model human trust in automated systems is
reasonable.

2.4.3 Applyiniz the Lens Model to Human Trust in Complex. Automated System

Conceptually, modeling human trust in automated systems using the Lens Model, shown
in Figure 2.6, is relatively straightforward (Seong & Bisantz, in press). The judgment modeled in
this case is the operator's judgment of the trustworthiness of some system component or output.
That is, the operator decides whether or not a system component is to be trusted. In Lens Model
terms, then, the environmental criterion is the actual trustworthiness of the component. The
judgment is the operator's assessment of that trustworthiness. To make this judgment, the
operator must rely on a set of observable cues which have some relationship to the components'
trustworthiness. In this paradigm, the concept of calibration is explicitly measured by
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achievement (ra)-the extent to which the operator's assessment of trustworthiness matches the
true state of the environment. One can also consider calibration to include the operator's
adaptation to the structure of the environment, in terms of the relationship between the cues and
actual integrity of information.

Further specification and experimental verification of this model of trust in automation
beyond the general level noted above presents certain difficulties, however. First, there is no
clear, objective measurement of the true state of environment in terms of its trustworthiness.
Generally, trust as a state in itself has been measured only subjectively. This is problematic in
terms of the Lens Model formulation, since application of the Lens Model and evaluation of the
model parameters requires knowledge of the true environmental state. To circumvent this
difficulty, we propose transforming the judgment from one of an assessment of trustworthiness to
one that is more performance-oriented. From an engineering standpoint, we are interested in
human trust in a system to the extent to which that trust affects system performance. For
instance, we are interested in whether or not operators utilize an automated controller or obtain
certain data, given their trust in that controller or information source. The true state of the
environment, in terms of the adequacy of the controller or the integrity of the data source, can be
objectively determined. For these examples, the operator's judgment would be whether to use
the controller or the data. More generally, the operator's judgment is one of component
utilization, and the true state of the environmental criterion is whether or not the component
should have been used. In terms of trust, this assumes that an operator's behavior in utilizing a
system component reflects their trust in that component.

* Second, to implement a Lens Model description of human trust in automation, it is
necessary to specify what cues might be available for an operator to make a judgment about
whether to use a system component. Candidate cues include the components of trust identified
by previous studies of trust (e.g., Barber, 1983; Rempel, et al., 1985; Zuboff, 1988). For
instance, cues could include such factors as predictability, dependability, faith, reliability,
competence or robustness. To be included in a quantitative Lens Model, these cues would be
both measurable and available to the operator. The availability of these candidate cues to the
operator depends to some extent on how information is displayed to operators. However, the
consideration of how to measure these cues must be addressed. For example, consider
predictability. If we define the environment to be judged in terms of a subsystem or set of
systems, we can represent predictability in terms of the degrees of freedom in performance that
were designed into the system. That is, predictability could be measured in terms of allowed
error or performance variance. The smaller the degree of freedom, or allowable error, the more
predictable the system is. If predictability is one component of trust, as Barber claimed, then
trust will be negatively impacted by a large degree of performance variability. Additionally, the
reliability of a system or component could be measured in terms of past performance (e.g.,
breakdowns, errors, etc.).

2.4.4 Instantiating the Model

To evaluate the model, an experimental framework has been established in an 1W domain
(Seong, Llinas, Drury, & Bisantz, in press) in which one can consider trust in the context of aided
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adversarial decision making, where military officers must assess the integrity of information
which may be intentionally altered or degraded by an enemy. In this domain, the points of attack
by an enemy can be the real battle situation, data gathering or fusion algorithms, or a data transfer
network. By changing the points of simulated attack, we may able to observe how operators
successfully calibrate their trust in terms of accurately pinpointing the point of attack and
changing the level of trust. In the 1W domain, studying human trust is important for several
reasons. For example, forces might be vulnerable to information attacks which diminish their
trust in DF or other decision aids, rendering these assets less useful, or to deceptive attacks, in
which an inappropriately high level of trust in the aid is maintained. In terms of the Lens Model
approach, data (fusion algorithm outputs) would be judged as usable or not (e.g., trustworthy or
not), based on operators' understanding of the predictability, reliability, etc., of the information
displayed to them.

A Lens Model approach for modeling human trust in automated systems has been
proposed. Because the Lens Model provides the means for modeling both human judgment
policy and the actual structure of the environment, it allows operator calibration to the actual
trustworthiness of a system to be explicitly considered. Conceptual solutions for addressing
certain difficulties with this approach, such as the objective determination of the true state of
system trustworthiness and the identification and measure of cues which reflect system
trustworthiness, were discussed. Finally, an experimental framework in the domain of 1W was
described which may provide the means for further instantiating and evaluating the effectiveness
of this model of human trust in automation.

We have now augmented the trust transmission model by postulating cue use as an
intervening variable. Thus each observable characteristic can contribute to transmitted trust, lost
trust and added trust. The overall performance level [ra] corresponds to the transmitted trust, but
the Lens model postulates mechanisms by which it is developed. Note that the trust transmission
model is value-free, in the sense that we only consider the correspondence between input and
output trust.- In contrast, the Lens model makes values explicit (i.e., the values to the operator of
the various cues).

The nature of the cues themselves can be derived from our knowledge of trust measures
(Section 3) and factors affecting trust. For example, the dictionary definitions, the various trust
frameworks (Section 2.2), and Sheridan's (1988) list of trust characteristics can all contribute
potential cues. We could eventually see a mixed list, which includes reliability, robustness, and
familiarity from Sheridan's work on trust and observability and complexity from the
complacency list of Lee, Parasuraman, and Bloomfield (1997). Other cues could well be added
as our knowledge of the measurement of trust develops. Similarly, our knowledge of human
error causes (e.g., biased sampling, confirmation bias, and complacency) can lead to insights into
cue utilization by operators.

In summary, our review of the twin literatures on human-human trust and human-
automation trust has led us to models of trust transmission and trust estimation, both of which we
believe are highly applicable in an 1W environment.
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Figure 2.6 Model of human trust in automation using the Lens model.
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3.0 MEASURES OF TRUST AND RELATED NOTIONS

3.1 Overview

Previous research in the area of trust has used two basic types of measures for assessing
trust in different situations: personal rating measures and process and performance measures.
Rating techniques, such as questionnaires, may seem to be the most direct way to measure a
subjective feeling or state of mind (such as the amount of trust one has in another person) or in
the information provided in a complex system. However, more objective measures can also
provide information relevant to the assessment of trust. For instance, people's decision making
or control strategies may change based on the trust they have in the available information, or the
quality of various systems components. The following sections summarize rating measures that
have been used in previous studies. Section 3.2 describes rating measures of trust that have been
used in previous research. Section 3.3 outlines an approach for systematically developing a scale
for measuring feelings of trust between humans and systems and presents preliminary results
from a study based on this approach. Finally, Section 3.5 describes human-system process and
performance measures of trust that have been used in previous systems and how these can be
applied to the measure of trust in an 1W environment.

3.2 Rating Measures of Trust

One method by which trust has been assessed is through the use of questionnaires, or
.rating scales. These subjective trust scales include the Trust Scale (Rempel, Holmes & Zanna,
1985, Rempel & Holmes, 1986), the Interpersonal Relationship Scale (Rempel et al, 1985;
Rotter, 1967, 1980), and the Dyadic Trust Scale (Larzelere & Huston, 1980). In general, these
questionnaires were developed from a social science perspective, and focused on investigating
different aspects of trust between humans in particular. No consistent set of characteristics were
studied across the questionnaires. Subjective measures of trust have also been used in
conjunction with experimental studies in which participants are asked to rate their trust in aspects
of a system they were controlling (e.g., Lee & Moray, 1994; Muir & Moray, 1996). Additionally,
an initial study of the dimensions or features of automation-related complacency (signifying
overtrust) was conducted by Singh, Molloy and Parasuraman (1993a). The following sections
summarize the content and findings of some previous studies which used subjective measures of
trust.

Trust Scale. Rempel et al. (1985) developed a trust scale to measure what they
hypothesized to be three independent components of trust: predictability, dependability, and
faith. The concept of trust can be considered a construct with a number of different elements,
each contributing to the overall feeling of trust. Their study was based on the notion that people
attempt to understand their partners in terms of acts, dispositions, and motives that would predict
positive responses (Rempel et al., 1985). The authors related the recommended constructs of
trust both to each other and to feelings of love and satisfaction within a close relationship.
Twenty-six topical questions were developed and refined in this scale, derived from earlier scale-
related studies such as Rubin's Loving and Liking Scale (Rempel et al., 1985), and were
designed to measure levels of trust within close interpersonal relationships (see Table 3.1 for

52



selected example questions). In a later study, Rempel and Holmes (1986) constructed a similar,
but more condensed trust scale. In general, Rempel and his colleagues found that trust is related
in important ways to the success of a close relationship. Questions on the Trust Scale addressed
multiple hypothesized dimensions of trust, such as faith, dependability, and predictability.

Table 3.1 Selected Questions from Rempel et al.'s (1985) Trust Scale. Respondents Were Asked to Rate
Their Agreement with the Statements, Using a Seven-Point Scale.

Designated
Question Trust

Category
1 When we encounter difficult and unfamiliar new circumstances I would not feel F

worried or threatened by letting my partner do what he/she wanted.
2 I can count on my partner to be concerned about my welfare. D
3 In general, my partner does things in a variety of different ways. He/she almost never P

sticks to one way of doing things.
* F=faith; D=dependability; P=predictability

Interpersonal Relationship Scale. Rotter (1967) constructed a different measurement
scale for trust, called the Interpersonal Trust Scale. For this study, trust was defined as an
expectancy, held by an individual or a group, that other people can be believed. Example
questions used as a motivating framework for rating trust, using Rotter's Interpersonal
Relationship Scale, are shown in Table 3.2. In contrast to Rempel et al. (1985), the scale was
intended to measure general interpersonal trust rather than trust in a specific relationship.

Table 3.2 Example Questions from the Interpersonal Relationship Scale (Rotter, 1967). Participants Were
Asked to Rate Their Agreement with the Statements on a Five Point Scale from Strongly Agree to Strongly

Disagree.

Parents usually can be relied upon to keep their promises.
Hypocrisy is on the increase in our society
In dealing with strangers, one is better off to be cautious until they have provided evidence that they are
trustworthy.

Dyadic Trust Scale. Larzelere and Huston (1980) developed the Dyadic Trust Scale,
which was intended to measure interpersonal trust between romantically linked partners, or
dyads. The authors defined trust as the extent to which a person believes another person (or
persons) to be benevolent and honest. Larzelere and Huston (1980) used factor analysis to
identify eight independent components of trust, based on an initial set of 57 items, which were
adapted from previous scales (e.g., Rotter, 1971, Schlenker, Helm, & Tedeschi, 1973). Example
questionnaire items are shown in Table 3.3. Responses from this scale correlated highly with
scales of love but did not correlate significantly with measures of generalized trust, indicating
that the scale measured interpersonal rather than general feelings of trust.
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Table 3.3 Example Statements from the Dyadic Trust Scale Study (Larzelere & Huston, 1980). Participants
Were Asked to Rate Their Agreement with the Statements on a Seven-Point Scale from Strongly Agree to

Strongly Disagree.

My partner is primarily interested in his/her own welfare.

My partner is perfectly honest and truthful with me.

My partner treats me fairly and justly.

Complacency Potential Rating Scale. Feelings of complacency are related to feelings of
trust and possibly overtrust. For instance, people are more likely to behave complacently, feeling
secure in their awareness of a situation, if they trust the information they are seeing, or the ability
of a system to perform according to expectations. However, a false sense of complacency may
result in an undesirable outcome. For example, complacency is one of the behavioral coding
categories used to classify aircraft flying incidents in the Aviation Safety Reporting System
(ASRS) (Singh et al., l993a). A feeling of complacency may result in non-vigilance based on an
unjustified assumption of satisfactory system state. To study this issue, Singh et al. developed
and evaluated a rating scale to measure someone's potential for becoming complacent with
automated technology. The study focused on investigating attitudes towards everyday automated
devices such as automated teller machines. They claim that people who show more trust in and
reliance on automation will have a higher potential for complacency. Example motivational
statements from this rating scale, which contained 20 items, can be found in Table 3.4. Factor
analysis was used to identify factors contributing to the overall complacency potential score,
including general attitudes toward automation, and confidence-related, reliance-related, trust-
related, and safety-related attitudes toward automation.

Table 3.4 Example Motivational Statements from the Complacency Potential Rating Scale Study (Singh et
al., 1993). Participants Were Asked to Rate Their Agreement with the Items, Using a Five-Point Scale

Ranging from Strongly Agree to Strongly Disagree.

Manually sorting through card catalogues is more reliable than computer-aided searches for finding items in
a library.

If I need to have a tumor in my body removed, I would choose to undergo computer-aided surgery using
laser technology because computerized surgery is more reliable and safer than manual surgery.

People save time by using automatic teller machines (ATMs) rather than a bank teller for banking
transactions.

Trust in Automated Systems. Lee and Moray (1994) and Muir and Moray (1996)
performed experiments using process control simulations, in which they manipulated the quality
or various system components. In addition to several performance and process measures, they
had participants rate their trust in different system aspects using a subjective scale, shown in
Table 3.5. (See also the discussion on these studies in Section 2.)
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Table 3.5 Motivational Statements from the Subjective Rating Scale Study of Lee and Moray (1994).

Trust in the local bus service to get you to the store on time./Self-confidence in your ability to get to the

store in time.

Trust in your calculator or computer to produce the right answer.fYour self-confidence in your ability to
arrive at the correct answer doing the calculations manually.

Trust in the heating system where you live to keep you comfortable.IYour self-confidence in your ability to
turn the heater on and off manually to keep you comfortable.

Trust in your watch to tell the correct time.IYour self-confidence in your ability to estimate the correct time.

Trust in Advice Giving Systems. Lerch and Prietula (1989) investigated the effects of the
source of financial management problem solving advice on self-reported measures of agreement
with the advice and confidence, or trust, in the source of the advice. Advice provided to
participants was attributed to either expert systems (i.e., to automated decision aids) or humans
with different qualifications (expert vs. novice). Participants were asked to rate their agreement
with the advice and their confidence in the source of the advice. Confidence was assessed at the
outset of the experiment, reflecting any differences in participants' a priori attributions of
dependability of the advice source. Subsequently, confidence was assessed after participants
received advice, solved problems, and received feedback about the appropriateness of the advice.
Lerch and Prietula hypothesized that these subsequent measures of trust would reflect how trust
changes based on the quality of the advice. The authors found that, overall, participants were
less confident in expert systems and human novices than human experts. Additionally, trust, as
measured by a subjective rating of confidence, in all three sources changed as the quality of the
advice, and thus participants' agreement with the advice, changed. Trust increased after
participants agreed with advice on some problems (which was typically good advice) and
declined after participants showed less agreement with advice on other problems (which was
typically poor advice), indicating that participants were updating their initial ratings of
confidence by considering their experience with the advice.

3.3 Developing an Empirically Based Scale to Measure Trust

People's feelings of trust have been measured directly using many different types of
questionnaires, in both social psychology and engineering, as described above. However, the
questionnaires used to measure trust in both social psychology and human-machine systems
research have not been based on an empirical analysis and determination of what kinds of factors
or items should be included in the questionnaire. Instead, each questionnaire was designed based
on the researcher's theories about the meaning of trust, and the multiple components of trust
within these theories. Additionally, the previous studies have not explicitly evaluated how trust
between human and automated systems differs from trust between humans, or for that matter
from trust in general. This is important, because any trust measurement scale used to evaluate
trust in automated systems such as those used in an AADM environment should be based on
those factors important to trust between humans and systems, rather than factors of trust between
people, or trust in general.
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Since the concepts investigated in different questionnaires for different research purposes
may or may not be independent of each other, simply creating a comprehensive questionnaire by
combining items from previous questionnaires would not be appropriate. To develop a
descriptive model of human trust in any situation, we need a questionnaire that is comprehensive
and measures a set of factors which contribute independently to overall trust.

To identify potential similarities and differences among concepts of general trust, trust
between people, and trust between humans and systems, and between trust and distrust, we are
currently performing a three-phased, empirical study, modeled after that used by Zhang,
Helander, and Drury (1996). In the first phase, we collected various words related to concepts of
trust and distrust. In the second phase, we investigated how closely each of these words was
related to trust or distrust in order to evaluate whether or not trust and distrust were opposites or
represented completely different concepts, and whether or not concepts of trust and distrust were
similar for general trust, trust between people, and trust between humans and systems. In the
third phase, we are conducting a paired comparison study to identify multiple, independent
factors of trust and distrust.

Phase 1

Objective. The objective of this phase was to collect a large set of words related to trust and

distrust.

Participants. Seven students majoring in Linguistics or English were recruited, because of their
presumed knowledge of word meanings. Our goal was to identify as many words as possible
which were related to trust and distrust (for all three categories of general, human-automation, or
human-human trust), for use in subsequent experiments. All participants were native English
speakers.

Procedure. There were three conditions in this experimental phase. Participants were asked to
provide written descriptions of their understanding of both trust and distrust with respect to either
trust between people, trust in automation, or trust with no further qualification. Additionally, an
initial set of 138 words was collected by analyzing questionnaires used in previous studies, and
from dictionary definitions and thesauri. Participants were asked to rate whether those words
were related to trust using a nominal scale, with "positively related to trust," "not related to
trust, ". .negatively related to trust," and "don't know." As with the written descriptions, these
ratings were done with respect to the three conditions of trust between people, trust in
automation, and general trust.

Results. We obtained 36 new words from the written descriptions of trust provided by
participants. Additionally, we eliminated words from the initial set of 138 words based on
participants' ratings of the words. Words which were rated "not related to trust" by four or more
participants were eliminated. We also eliminated words that were ambiguous: that is, words
which some participants rated as "positively related to trust" while other participants rated as
"negatively related to trust." The final set of words, which we will refer to as Set- 1, contained
112 trust-related words.
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Phase 2

Objective. The objective of this phase was first, to determine whether the concepts of trust and
distrust are inversely related; and second, to determine whether concepts of trust and distrust are
similar across general, human-human, and human-machine trust.

Procedure. In this experiment, participants were asked to rate the extent to which words from
Set-i were related to trust or distrust, from the perspective of trust in general, trust between
people, or trust in automated systems, for a total of six between-subject conditions. Participants
rated the relatedness of the word to trust or distrust using a seven point scale, with end points of
"positively related to trust (or distrust)" and "negatively related to trust (or distrust)."

Results. Participants ratings were analyzed in two ways. First, for each word, average ratings of
trust were correlated with average ratings of distrust, for each of the three conditions (general
trust, human-human trust, and human-machine trust). As seen in Figures 3.1, 3.2, and 3.3,
ratings of trust were highly negatively correlated with ratings of distrust (r = -.96, r = -.95, r = -

.95, respectively). Thus, words that had a high positive rating for trust also had a high negative
rating for distrust. This indicates that concepts or trust and distrust * are in fact opposites, rather
than comprising different factors. If any other factors are present, they can explain a maximum
of 10% (1-0.95 2) of the variance in trust ratings. Additionally, we compared ratings of individual
words across the three conditions of general, human-human, and human-machine trust, to see
how individual words might be differently related to the three types of trust. Words were
assigned, according to their average ratings, into the top 5, 10, 15, 20, 25, and 30 words most
related to trust and distrust, for each condition. For example, the five words most related to
general trust were honor, trustworthy, honesty, integrity, and love. The five words most related
to trust between humans and automated systems were trustworthy, reliability, loyalty, honor, and
confidence. The five words most related to trust between people were honor, loyalty,
trustworthy, honesty, and faith. The degree to which these sets overlap gives an indication of the
extent to which concepts of trust and distrust were similar for the three conditions.
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Ratings of Unlabeled Trust vs. Distrust, for
112 Words

3,

0U
zU

U)

.2me

* Ur

Z 1 *. m• •

LUUC/)

> U

<:: -

-3 -2 -

AVERAGE TRUST RATING

Figure 3.1 Ratings of unlabeled trust vs. distrust, for 112 words.

Ratings of Human-Human Trust vs. Distrust,
for 112 Words
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Figure 3.2 Ratings of Human-human trust vs. distrust, for 112 words.
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Ratings of Human-Machine Trust vs.
Distrust, for 112 Words

Z~ 46

-2.U

C E

0L
-3

AVEAG TRS RAIN

Figure~~~~~~~~~~ 3. aig fHmnmciet ustv.dsrsfr12wrs

On masreoftis ovra stesz fteuino h esars h he odtos
'For exmli*h tp5 esfr ahcniinwr dnia, hnteuinstsz ol

No3 -2a -1r 00o 2uinsttesz fteuinsti 150 or 3esta h iiu

size TheepeceFigues3.3Ratings ofe Hunian-machsine arstds maistumt for 112 mu seordesar

Oltene measures of4 thid 35fovrlpi the siet of thed unonsfth segtsvl acrossithvel treelconditions
Forusexample, wife the "topr5 sets fore eachetcacrs conditionswr dnia, then rltheel union set sizewol

cmaetotemxmmunion set size wudb 5 indicating noesnbe ereo similarity acrossgrusFoth"op5setente
condiimum. uIon setszhould be 5,te whilefo the maximum union seset isizoe woldbel 15. h stwl

Tvrabl ine3.shw thesewee unineetefr then to9,1,1, 0 5 n0 words mosteepoiivl relatedtorutithse
priiatweeakdto trust (the rigttal of the diagram andlest related to trust(hlet half tof therldiagram).
Nthe thate ford10iofs 12unonwetsr, the sizre of thera unonseas si50%a rcless bt thante sml nimume
union sets. Nn f1 eshv no e ieta s5%o esta h aiu no e

sie.Tes erenaes s el s h uin etszead aimm n mnmu stsie,9r



>4

t > C) c

in ý

r-r EA

-4 r- s~ -

r- :

9E 4 w : C

r- a E .5 CL

0 0- > , ' 0

0 ul W 5 Bý -2 >

w E0 >4 >4

0 0.

Ccu(IU Qw-2 a i U= A) .3 .

A~ E

> ~ 0 0. - C

0 0g 0 0 2 ulz

C: "

C4 0 es~
U4- or =t awcE

P-0 0

es00

-4a

m ml,~ U oý 0 0 E

e 4 cl *, u 0 V;

ad V) An V=)

0:b
4)2~ ~ C~.g4~

~7
tn

16 1: ý 8 M 60



Union Set Size for Words Negatively Related to Trust
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Figure 3.4 Union set size for words negatively related to trust.

Union Set Size for Words Positively Related to Trust
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Figure 3.5 Union set size for words positively related to trust.

The above experiments provide results which are important to the development of an
empirically developed measure of trust. First, the high negative correlations of ratings of trust
and distrust indicate that these concepts can be treated as opposites, lying along a single
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dimension of trust. In previous studies, this has been assumed, but not empirically tested. In
practical terms, this implies that it is not necessary to develop questionnaires to measure high and
low levels of distrust, as well as high and low levels of trust. Second, patterns of ratings were
similar across the conditions of general trust, human-human trust, and human-machine trust, as
indicated by the high degree of similarity in sets of words related to trust. This indicates that
future work on the development of trust measures might not have to treat these types of trust
differently, and that results from studies of human-human trust (e.g., those that examine stages in
the development of trust; Rempel et al., 1985) may indeed have applicability to situations of trust
between humans and automated systems. Again, this transfer of trust concepts from the
sociological to human-machine domain had not previously been empirically tested.

Future work (Phase 3) has been initiated to develop a multi-dimensional scale of trust
based on the results of these two phases. Participants are being asked to rate the similarity
between all pairs of words that were highly positively and highly negatively related to trust, from
the results of Phase 2. The results from this paired comparison study will be analyzed using
factor and cluster analysis techniques to identify a set of factors which comprise trust. A multi-
dimensional scale of trust will then be developed based on these factors. We plan to use this
final scale, possibly coupled to performance and/or process measures (see next section) as a
measurement basis in human-in-the-loop experiments we hope to conduct in continued research.

3.5 Performance and Process Measures

In addition to subjective measures such as the rating scales described above, one can also
investigate trust by considering performance and process measures as measured on operators or
decision-makers while carrying out their tasks. Intuitively, if people hold an inappropriate level
of trust in a situation, combined human-system performance may suffer. Additionally, as
people's trust in various system aspects changes, they may act in qualitatively different ways.
For example, if an operator loses trust in the performance of an automated controller, he may
make more use of manual control. Similarly, if an operator distrusts some source of information,
he may switch to a new information source, or seek to verify the information.

Several researchers have employed performance and process measures in experiments in
which system components were manipulated in order to affect participants' trust in the system.

For example, Knapp and Vardaman (199 1) performed a study in which reaction time was
used as a measure of complacency. The authors suggested that reaction times to warnings would
be longer in situations in which they had grown complacent due to possible automated (i.e.,
system) responses to the warnings. Singh, Molloy, and Parasuraman (1993b) also studied
automation-induced complacency by introducing failures in an automated system monitor.
Failures occurred when the automated monitor did not detect system malfunctions. Participants
were required to identify when the automated monitor failed to detect malfunctions, by detecting
those malfunctions themselves. Singh et al. (1993b) found that participants grew more
complacent, identifying fewer malfunctions, when the automation performed at a consistent (but
not perfect) level of reliability, than when its level of reliability was variable.
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The studies by Lee and Moray (1992, 1994) and Muir and Moray (1996) discussed in the
previous section also employed process and performance measures to characterize participants'
trust of aspects of a simulated, semi-automated process control plant. In these studies,
participants had the option of using either manual or automated controllers to control certain
process aspects. Measures which were intended to capture aspects of participants' trust in the
automated controller included the amount of time spent using the automated vs. manual
controller and the number of manual control actions, the overall use of automated sub-systems,
and the number of actions taken to monitor the actions of the automated process. It is important
to consider the particular situation when applying these measures. For instance, in one
experiment (Lee & Moray, 1992) found that use of automated controllers actually increased when
subjectively rated trust declined. However, in this case the system rather than automated
controller performance was degraded, resulting in reduced trust in the system. Automatic or
manual control actions had the same effects, and participants resorted to automatic control to try
to recover from the system fault.

There are particular types of process and performance criteria that are of interest in the
IW/AADM domain that are appropriate for exploration in the next research phase. .It is
particularly important to determine possible cues and indicators that indicate a shift from a state
of trust to distrust. One could label these "Indications and Warnings," or I&W criteria. These
are indicators that co-occur with the incipient shift towards distrust. If these criteria can be
identified, then it is possible that countermeasures (either technical or procedural) could be
developed which prevents such shifts, in circumstances where they are inappropriate. An
obvious metric, the cessation of use of an automated decision ald, would indicate when a total
collapse of trust in the aid has occurred. This is the point where the user has effectively switched
off the decision aid. Finally, we also plan to explore the notion of temporal trajectories, or
dynamic patterns of trust over time, in order to use those trajectories to provide further insight
into trust related behavior, and hopefully develop the means to prevent undesirable human-
system behavior. For example, it can be important to minimize the duration of the inertia or
hysteresis loops in trust dynamics indicated in previous research. In terms of 1W, for a system
that is sound, it is desirable to identify' techniques to avoid distrust, deter degradation to a fully
manual mode, and to minimize the duration of distrustful states.

3.6 Summary

In summary, both subjective rating scale measures, and performance and process
measures have been used to measure trust. Trust has been studied in circumstances of
interpersonal relationships and with respect to trust in automated systems. However, no one
definition of trust has been used consistently across these studies. In fact, it is most appropriate
to consider the concept of trust to be multi-faceted, encompassing many different qualities rath 'er
than a single-dimension concept. We described the initial findings from a study designed to
develop an empirically based, multi-dimensional scale of trust, based on the multiple qualities of
trust expressed in prior research. We plan to use this scale in combination with appropriate
performance and process measures, to assess people's trust in AADM environments. An
experimental framework developed to inform experimentation on these issues is described in
Section 4.
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4.0 INVESTIGATING TRUST IN AN 1W DOMAIN

4.1 -Introduction

Given the tools for measuring trust that were described in the previous section, it is
possible to consider the types of empirical studies which could be performed to investigate
human trust in 1W domains. Such controlled investigations would provide a better understanding
of what situation characteristics influence human trust, as measured by either or both of the
subjective rating and performance/process measures described above, and also how changes in an
operator's trust in system components affects ultimate system performance. In order to develop
possible scenarios for investigating aspects of trust in an AW situation, it is instructive to consider
how trust has been investigated in other complex, dynamic systems.

4.2 Previous Investigations of Trust in Automated Support Systems

As described in Sections 2 and 3, empirical work in the area of human trust in automated
support (decision-aided) systems is limited, and has concentrated primarily on investigating trust
in simulated, semi-automated process control environments. Additionally, and significantly, due
to our interest in 1W environments, these studies have been in non-adversarial domains.

As discussed in Section 2, Muir and Moray (1996) and Lee and Moray (1994) studied
issues of human trust in simulated, semi-automated pasteurization plants. In these experiments,
participants were asked to control a simulated pasteurization process either by controlling pump
and heating sub-systems, or by activating an automated controller, in order to produce
pasteurized liquid. Different system aspects were altered to see how participants' trust in
systems components, such as the automated controller, was affected. In particular, Muir and
Moray (1996) altered the quality of the pump systems by introducing either random or constant
errors in its ability to maintain a set-point, introduced errors into the pump's display of its pump
rate (although the actual pump rate was error-free), and the performance of the automated
controller in setting and maintaining appropriate settings for the pump. Lee and Moray
introduced faults into pump performance (Lee & Moray, 1992) or faults into either automatic or
manual controllers (Lee & Moray, 1994). These conditions are not unlike the type conditions
that may arise in 1W environments-anomalies could be introduced at various points in an
AADM system, including sensor data or processing algorithms. Trust was measured both
subjectively, using rating scales (which were not extensively developed), and objectively, by
logging participants' actions (e.g., hypothesizing that more or less use of an automated control
system implied more or less trust in that automated system). Because faults were introduced into
different components, these experiments investigated trust in a particular system aspect (e.g., the
quality of the automation, or the quality of the underlying pump system) rather than trust in
automation generally.
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4.3 Designing Experimental Scenarios for Studies of Trust in Aided Adversarial Decision

Making (AADM) Environments

4.3.1 Develoyina a Framework for Experimentation

In the Aided Adversarial Decision Making (AADM) environments of interest to this
project, DF techniques are used to aid the decision maker by synthesizing data from numerous
sources into a form useful for the decision maker. Because the environments of interest are ones
involving adversaries, the possibility of corruption in either or all of the data, fusion algorithms,
and displays involved in such decision-aiding systems can be introduced by "Information
Operations" (Offensive 1W operations) carried out by the hostile forces. We propose to conduct
human-in-the-loop experiments to study various hypotheses related to human trust under 1W
conditions and in AADM environments, as affected by such 1W environments. In order to guide
the development of such experiments, we developed a framework which integrates and
systematically varies the various factors which could influence human trust in AADM
environments. These factors are drawn in part from an examination of some of the experimental
studies cited above.

The multi-faceted manner in which trust was investigated in the experiments described
above suggests two dimensions along which studies of human trust in complex environments,
such as an aided adversarial decision making environment, could vary: we called these the system
dimension, and the surface-depth dimension.

4.3.1.1 System Dimension:

In the pasteurization experiments (Lee & Moray 1994; Muir & Moray, 1996) the quality
of system performance was manipulated at what could be called different "system" levels. Faults
or random errors were introduced at the physical environment level - the process control system
itself (i.e., the pumps), and at the level of a (system) control device or system - the automated
controller. Additionally, faults were introduced into the interface itself. There are analogous
levels in an AADM environment. The physical environment level in the pasteurization
experiments-the pumps and heaters--corresponds to the actual tactical situation that is taking
place. Just as the states of pumps and heaters can be observed and controlled, the states (e.g.,
current locations, available weapons) of hostile and friendly assets can be assessed, and actions
related to the situation can be taken. The next level, DF systems and algorithms, which
automatically combine and synthesize information obtained from the tactical environment
(forming the basis for control (or decision) actions), can be considered analogous to the
automated controller in the pasteurization experiments, which used information from the physical
control system to automatically take control actions. Finally, in an AADM environment, one can
consider a third level, the interface level. At this level, the results of the DF algorithms are
displayed to the operator, in order to aid decision making.

4.3.1.2 Surface-Depth Dimension:

Another dimension along which investigations of trust can vary is a "surface-depth
dimension." The surface level corresponds to the information available about the environment
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(as formalized in Brunswik's Lens Model; Cooksey, 1996), whereas the depth level corresponds
to the actual state of the environment. The manipulations performed by Muir and Moray (1996)
can be described in terms of these dimensions. Muir and Moray (1996) manipulated both the
characteristics of the pump itself (the depth level) and the display of the pump rate (the surface
level). This surface-depth dimension can be applied at all three of the system-dimension levels
described above, resulting in six combinations, as shown in Table 4. 1.

Table 4.1 Components of an Aided Adversarial Decision Making Environment Described Along a System
and a Surface-Depth Dimension.

Surface-Depth Dimension

System Dimension Surface Level Depth Level

Environment Level: Tactical Situation Sensed and Observed Data Evolving Tactical Situation

Intervention Level: DF Algorithms Results of Algorithms DF Algorithms

Interface Level: Decision Aid Display Format IInformation to be Displayed

We propose that the combination of the Surface-Depth dimension and three system levels
will provide a useful framework for organizing future experimentation in the area of human trust
in AADM environments. That is, these Dimension-Level (DL) pairs form a set of experimental
factors which could be varied in AADM-IW related experiments. For instance, at the level of the
tactical situation (the environment level), the depth dimension corresponds to the actual states
.and activities of the various players in an evolving tactical situation. In turn, the degree or nature
of this tactical-depth factor could be varied in an AADM-1W sense over levels such as "Benign"
or "Threatening" or "Critical." The surface level in this case corresponds to sensed or observed
information about the environment (i.e., the tactical situation). Again, in terms of AADM, the
levels of this tactical-surface factor could be varied over levels such as "Uncorrupted" or
"Moderately Corrupted" or "Severely Corrupted." At the level of the DF algorithms (the
intervention level), the depth level of the surface-depth dimension corresponds to the structure of
actual algorithms and procedures themselves. The surface level reflects the estimates produced
by these algorithms. Finally, at the interface level, the depth dimension corresponds to the actual
information or advice that is to be given to the operator (the "state" of the display), while the
surface dimension, analogous to the DF algorithm case, corresponds to the manner or format in
which it is displayed.

4.3.1.3 Further Categories of Corruption:

Within each "Factor" cell of Table 4. 1, it is possible to identify various types of
malfunction, or causes of information degradation or corruption:

1. Element Degradation. The quality of the system component can be degraded through
constant, random errors, or discrete failures.

2. Element Failure. System components can fail completely resulting in a loss of data.

Different causal factors for the corrupting processes can also be considered:
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1. Non-intentional. System components can degrade due to non-intentional malfunction (e.g.,
material failures, maintenance-related faults).

2. Sabotage. An enemy can take intentional action to interfere with a system component or data
stream.

3. Subterfuge. An enemy can take intentional action both to interfere with a system component,
and to disguise that sabotage.

Given a particular experimental context, the surface-depth and system dimensions
described above, along with the two levels of malfunction, and three causal factors, can be used
to systematically define a series of experimental manipulations which can be used to investigate
issues of human trust in aided adversarial decision making environments. As discussed above,
this provides a framework for AADM-IW experimental planning and design.

4.3.2 Experimental Context

For studies of aided adversarial decision making, a possible experimental context would
be an interactive battle simulation in which people must make interpretations and/or decisions
(e.g., identification of unknowns, decisions to engage hostile forces) based on information
gathered and fused into decision-aiding estimates about the situation, such as related to electronic
emissions, weapons profiles, and locations and movements of various agents. The simulation
would include DF modules which could synthesize environmental information in order to aid the
participants decisions.

4.3.2.1 Experimental Scenarios and Manipulations:

The system and surface-depth dimensions, along with the levels of malfunction and
causal factors, can be used to identify possible experimental manipulations in the study of trust in
aided adversarial decision making, as shown in Table 4.2.

Scenario 1 (Environment/Surface/Degradation/Sabotage). Manipulate the quality of sensed or
observed situational data that is being input to the DF algorithms, to simulate adversarial
interference in data gathering mechanisms. This would include viral attacks on local/sensor
based information processes (e.g., detection processing), emplacement of hostile chips in sensor-
related hardware, etc.

Scenario 2 (Environment/Depth/Degradation/Sabotage). Simulate hostile forces' use of
deceptive tactics, use of decoys, camouflage (camouflage, concealment, and deception [CCD]),
etc. to disguise their true intent.

Scenario 3 (Intervention/Surface/Degradation/Sabotage). Introduce random error into DF
processing results to simulate possible attack on these systems by sabotage, computer viruses.
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Table 4.2 Potential Experimental Scenarios and Manipulations, Organized by System and Surface-Depth
Dimensions and Levels of Malfunction, Causal Factors.

swtfaceIoepthi Sfc ee et eeDi melnsion II
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Scenario 4 (Intervention/Depth/Degadation/Sabotage). Exploit knowledge of DF algorithms and

knowledge-based system structuares to cause faulty, behavior, such as the insertion of biases,correlated data, non-normal data, or incorrect rules into the-knowledge-based systems.

Manipulate the quality of processed information that is being input to the decision aids, in order
to simulate adversarial interference in these data transfer mechanisms.

Scenario 5 (Display/SurfacelDegradatiorvSabotage). Alter the properties of the decision aid
display in accordance with the level of trust the adversary desires the friendly agent to have in the
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information being provided.

Scenario 6 (DisplaylDepthlDegradationlSabotage). Introduce errors in the decision aid's
reasoning mechanisms to simulate possible attack on these systems by sabotage, computer
viruses.

4.3.2.2 Experimental Participants:

Within these possible scenarios, experiments could be constructed with either single or
multiple participants. In a single participant scenario, participants would interact with a
simulated tactical situation, obtaining information and taking actions. Adversarial 1W activities,
such as those indicated in the above scenarios, would occur automatically through the simulation,
based on a pre-defined script.

In a multiple participant scenario, there are several possibilities. Two or more
participants could collaborate against simulated hostile forces and 1W attacks, as in the single
participant case. However, with multiple players, it would be possible to investigate how people
integrate information they obtain through their own systems, and information they obtain
"second-hand" from other people, and how trust in that information may be differentially
affected by its source (or "pedigree"). Alternatively, participants could compete against each
other, with 1W attacks introduced either automatically through the simulation, or at the discretion
of the participants.

In either of these cases, it is also possible to consider that some agents or participants
would be synthetic; that is, created in software as so-called "intelligent agents." This would add
a dimension of experimental control, since the behavior of the agent would be fully controllable,
or at least controllable within known limits.
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5.0 IMPLICATIONS FOR THE DESIGN OF AN INFORMATION WARFARE
LABORATORY

5.1 Overview

In our previous chapters we have developed an overview of the state of research in the
area of human trust in automated systems, with a particular focus on the implications of trust and
distrust on decision making in adversarial and IW environments. As described in the previous
sections, there are two primary bodies of work that are potentially related to trust in AADM and
IW environments: 1) Trust studies, carried out by sociologists and human factors engineers,
which focus on interpersonal trust, and on trust in automated systems in non-adversarial
environments, respectively, and 2) studies of IW effects on AADM, which have generally
focused on Defensive IW (information protection), taken a top-level point of view on such
matters as policy, concepts, impacts, and concerns, as well as considered human decision making
in AADM environments using Boyd's "OODA" loop model ("Observe-Orient-Decide-Act";
1987). Figure 5.1 shows this state of research diagrammatically, showing that to our knowledge
little to no experimental work has occurred that addresses both trust and the AADM domain.

State of Research

Little or None,
especially with

respect to
Experimentation

k - •_ Studies /

"* Sociological * Defensive IW
"• Process Control Experiments * Policy & Concepts
- Complacency-focused * Impacts and Concerns
"* Non-Adversarial - "OODA" Loop Views

Figure 5.1 Current state of research on trust and 1W.

From the investigations on trust, we concluded that trust is best seen as a multi-
dimensional construct, reflecting a set of interrelated perceptions (e.g., the reliability, or
predictability of an entity) and actions (e.g., use of an automated system, reliance on a person).
The concept of trust is based on past experience of a person with the entity to be trusted,
characteristics of the entity (e.g., is it predictable, are its mechanisms understandable), and
characteristics of the person (e.g., in the case of automated systems, someone might "overtrust"
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the automation if he lacks the skills to take over manually). Trust also has dynamic
characteristics, changing over time, and in response to specific events. It can increase over time
as people have experience with a reliable and predictable system, and then degrade if that system
exhibits faulty behavior. Once trust has degraded, it can take time before trust in the system can
be regained. Trust as a construct is important in AADM environments insofar as it impacts
changes over time in the behavior of a decision-maker, with respect to their use of information
and decision aids.

However, there have been no experimental studies of trust which have specifically
addressed trust in adversarial environments, and nor have the studies of 1W in AADM addressed
issues of trust. We believe that people's reliance on information and automated algorithms, and
in particular, the event- and time-driven patterns of trust development and diminishment may
vary significantly between adversarial and non-adversarial situations.

5.2 Laboratory Design for Pilot Studies

In order to empirically investigate issues of human trust in AADM situations, it is
necessary to construct an experimental test bed. This test bed, a dynamic interactive computer
micro-world, should comprise a battlefield and DF simulation, configurability, display and
controls, data logging features, and experimental scenarios, as described below.

Battlefield and Data Fusion Simulation. A discrete-event simulation of a battlefield
environment, containing multiple, dynamic, and possible uncertain information sources (e.g.,
position, electronic emissions, weapons capabilities) about potential threats and friendly assets,
along with a decision aid based on data fusion technology is necessary to provide interactive,
experimental scenarios to participants. Various experimental scenarios, including dynamic sensor
and state variable values, and time and/or action dependent simulated adversarial or non-
adversarial events (e.g., information manipulation or degradation) could be developed as a basis
for experimentation. Ideally, these testbed components would allow for two-sided simulation
between hypothetical friendly and adversarial force commanders or staff, and be "reactive," in
that each side's responses to runtime simulation dynamics would reflect actual runtime
responsiveness or adaptations-said otherwise, neither side's functions would be "scripted"
(non-reactive). In the long run, we would also desire that the testbed incorporate so-called
"intelligent agents" or an equivalent mechanism to represent hypothetical or surrogate human test
subjects; such capability would permit additional test control, repeatability, and also permit
modeling of subject characteristics that might not otherwise be available (e.g., culturally-based
features, hostile military doctrinal features).

Configurability. In order to manipulate the independent variables indicated by the
experimental framework described above, the experimental system will have to provide the
ability to make several kinds of experimental manipulations. The intent here is to allow
experiments in which errors or other types of degradation are introduced into the fusion-based
decision aid, in order to measure participants' response (in terms of both trust ratings, and
observable actions). It must be possible to introduce system events at the different stages of the
DF process (e.g., a sensor failure, or a degradation of algorithm output) during the course of a
simulation, in order to simulate adversarial and non-adversarial failures in various levels of the
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system and decision aid. Also, it must be possible to have access to the inputs and products of
the process stages, so ultimately they can be displayed to the decision-maker (participant).

Display and Control. To understand the effects of information manipulation and
degradation on performance, it is necessary to have an experimental set-up which allows
participants to both perceive the possible manipulations,. and change their strategies (e.g., take
different actions) based on these perceived abnormalities. Therefore the experimental system
must allow participants to see the inputs to and outputs from different stages of the decision aid
(i.e., through a display), and to take action based on that information (i.e., have some form of
control). More specifically, the system must allow participants to obtain information from
different sources and stages of processing, so they can perceive abnormalities in any one source
or stage. Additionally, the system must allow multiple paths of action (e.g., different information
search strategies, or decisions made with and without the help of the decision aid) to assess how
decision making strategies might change based on changes in trust in a particular system
component.

Data Capture. To assess experimental performance, it will be necessary to automatically
log participants' interactions with the experimental system. Capturing data "within" the
simulation system boundaries should be straightforward and would involve seeding the system
with software probes for such data capture. These boundaries include the entire simulation
software system, and so include means for capturing both parameter values within any software
function during a run, and also any interactive actions taken by the operator, measured at the
human-computer interface. Additionally, it would be desirable in a robust configuration to have
the means to capture physiological parameters for a human subject during any run; this would
involve eye-movement, video capture, etc. Finally, we see a need for either within-run or post-
run capture of survey/questionnaire type data, related, for example, to capturing observations
related to the trust attributes discussed elsewhere in this report.

5.3 A Specific Laboratory Concept

The State University of New York at Buffalo has, through the generosity of Ball
Corporation (Dayton Office), received a copy of a simulation system called the "Semi-
Automated Ground Environment" or "SAGE." SAGE has the ability to "lay down" both air and
ground target-related problem simulations (i.e., scenarios that define the truth of an adversarial
behavior at the platform and weapon level). It can also simulate commander types at a coarse
level of fidelity. SAGE also has moderate-fidelity simulations of typical military sensor types.
Overall, it is a reasonably capable and respected (validated) simulation package. However, we
have not yet achieved in-depth knowledge about SAGE since it is a fairly large software system
having relatively little and current documentation. Nevertheless, we have achieved a degree of
familiarity with it and it may be possible to use it for the experiments characterized in the
materials of Sections 3 through 5 herein. Even if it is not the baseline from which we build an
experimental environment, considerations about SAGE are typical of what has to be done with
any simulation-based approach. (SAGE comes in different configurations, from a full-capability
version to a somewhat less capable personal computer version; whether any of these versions
will be used is uncertain but there is some flexibility in trading off complexity vs. capability.)
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Conceptually, we desire to create a synthetic environment as depicted in Figure 5.2. This
simulation concept builds upon our AADM model of Phase One, the figure depicting this model
is replicated here as Figure 5.3 to show the similarity among the two. Figure 5.2 shows a full
two-sided simulation environment in which friendly and adversary are reactive to each other over
time. Each has a decision aid (DA) data from particular sensors, each DA is fed data from
particular sensors, and each has a particular display subsystem. SAGE does not incorporate
"intelligent agents" but these could be added as an enhancement to achieve more experimental
control if desired.

Synthetic AADM Model with SAGE

SAGE SAGE

Sensor World Sesr ionHna
A _ffSytm state Sse

ADVERSARY FRIENDLY

Figure 5.2 Synthetic AADM Model with SAGE
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There are a number of other factors of a simulation environment that must be considered
in a prototype design among other effects:

1. The capability to simulate Offensive and/or Defensive Information Operations for either side;
this is tricky in that it can likely lead to highly-classified aspects of both U.S. and foreign 1W
capabilities and techniques, but some reasonable representation can likely be carried out in
the simulation.

2. The enablement of a means to capture and display the various trust or other metrics decided
upon for these prototype experiments; this is usually reflected in an "Analysis Module" or the
equivalent in a simulator design; at present, SAGE does not have these trust-related
capabilities.

3. The selection of an experimental methodology and approach to experimental designs (e.g.,
Monte Carlo aspects, statistical experimental design, factors and levels, subject
characteristics and blocking factors)

If we consider the "framework" for experimentation described in Section 4, coupled to
the simulator design of Figure 5.2, we achieve something like that shown in Figure 5.4 on the
following page. This figure shows one side of the two-sided diagram of Figure 5.2, and shows
the "entry points" for experimental factors as defined in Section 4. Exactly how to create the 1W
effects desired will need some further study, but the diagram makes it clear that the overall
experimental framework discussed in Section 4 is sound. From a test-capability point of view,
.the components that would need to be added to the current SAGE baseline are

e simulation of 1W operations

* collection of 1W metrics at various points in the processing system

* capturing aspects of human-system interaction and monitoring

0 ability to selectively generate various types and locations for 1W "intrusions" in the
overall process

0 simulation of "agent" behavior

With limited resources, it is likely that a simpler design for an initial lab prototype will be
developed. It is proposed that such prototype be defined in discussions with Air Force staff so
that proper priorities can be assigned to the most-desirable simulation features that can be
achieved within project resources.
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GLOSSARY

AADM Aided Adversarial Decision Making

ASRS Aviation Safety Reporting System

C3I Command, Control, Communication and Information

CCD Camouflage, Concealment and Deception

CMIF Center for Multisource Information Fusion

COA Course of Action

DA Decision Aid

DF Data Fusion

DISA Defense Information Systems Agency

DL Dimension-Level

DM Decision Making

FMS Flight Management System

ID Identification

1W Information Warfare

JDLIDFG Joint Directors of Laboratories Data Fusion Group

MIM Mixed Initiative Model

OODA Observe-Orient-Decide-Act

RPD Recognition-Primed Decision Model

SAGE Semi-Automated Ground Environment

UB State University of New York at Buffalo
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APPENDIX A

Further Thoughts on Sheridan's Criteria and the IW + AADM Environment

This short appendix contains some further thoughts on how the Trust criteria of Sheridan
(1988) can be interpreted and elaborated upon in the context of IW and AADM.

1. One aspect of trust in automation seems to relate to notions of Reliability. That is, a sense of
Predictability based on repeatability or consistent functioning. Said otherwise, a sense of
reliability in a decision aid is established when it can be observed to create the same output
under a particular set of circumstances. If we consider that there is a true input (or
"circumstance") It, an observable input L~, and a displayed Output Od, then generally, in the
Information Warfare setting, there are various points of vulnerability.

2. 1, is susceptible to deception and corruption of Operations and Actions (false actions in the
real world, such as feints)-this is artificially creating a false circumstance.

3. L~ is susceptible to Parametric or Algorithmic corruption-this is creating false output from
internal processes in spite of a "correct" circumstance in the real world.

4. Od is susceptible to Algorithmic corruption-this is creating a false display in spite of both
(a) an unperturbed real world and (b) unperturbed (non-display related) processing
operations.

5. Another aspect of Trust is a sense of Competence or Robustness in the decision aid (i.e.,
correct processing in the face of varying-and presumably true-real-world circumstances).
In some sense this represents a "calibration" of the decision-aiding software
processes/algorithms. The user sometimes sees this through some level of participation in the
system development process for the DA-that is, through observation of DA performance
during developmental testing. Here, each instance of output would be looked at in the
Reliability sense, to the extent that repeatability tests are made. Some users may never see
the DA until delivered to the operational setting, in which case they usually see only a
relatively small subset of conditions over which the DA is exercised.6 The literature about
Trust and the related notion of Complacency reflects these remarks with studies that show
that unwarranted Trust is often ascribed to DA's on the basis of small-sample conditions.

6. Now the corruption of a users Trust in the DA through 1W techniques places a requirement
on the deceiver to know the nature of adaptivity in the DA internal workings-he must
hypothesize about (or, e.g., rely on intelligence for) these inner workings. But if he is astute
in the likely technology for the DA, a reasonable approximation to the inner workings may be
feasible. Conceptually, this allows the deceiver to extend the vulnerability discussed above
(under Reliability) "n-fold" where n is the range of circumstances for which he is aware of
the DA/algorithm workings. Alternately, if the deceiver is aware of the limits of capability of
the DA (he could base this on technology assessments as just mentioned), he could create

'Of course, this is dependent on the stochastic variation in real world circumstances; the user may possibly see the

DA performing well across a wide variation in circumstances but on average he will see relatively small variations.

80



circumstances which are in those fringe operating regions and reduce the users impressions of
the competence of the DA.

7. Familiarity is yet another feature or aspect of Trust. For automated DA's this can involve the
use of common or perhaps military-standard symbology, nomenclature, etc. It can also mean
some sense of "naturalness" in operation, in communication, etc. It seems that there may be
(at least) two dimensions to Familiarity: a cultural dimension, and a "standards" dimension.
The latter would be easy to deceive (e.g., in creating a false display but using military
standard symbology) since such matters, even if classified, are usually not highly classified
and protected. The former involves much more of an investment on the part of the
deceiver-to become culturally "transparent" can require a lot of work. So, it could be that
"Cun-naturalness" in DA workings or displays could be a clue as to possible loss of DA
system/information integrity-that is, to the existence of an 1W attack.

8. Another dimension is in Understandability. This is particularly important if, as noted in (3)
above, the user does not participate in the DA development process (since he will not have
been a part of that process and not have had involvement and insight into the innards of the
DA). If this is the case, then the degree of Understandability governs the users ability to form
his own mental model of the inner workings of the DA, which also lends itself to
Predictability. Note that Understandability is not equal to Familiarity, although Familiarity
aids in developing an Understanding. Here the deceiver can simply have the goal of
generating randomness in his attack, since irregular (hard to understand) patterns between
input and output will aid in loss of Trust.

.9. On explication of Intention. Estimating Intent is one of the more difficult things to do in
military situations but is also, if done correctly, one of the highest payoff areas. Intent is
(approximately) an explicit indication of a future planned action to which the actor is
committed; the difficulty is in defining and observing those indicators. An actor develops
Intent based in part on his value system; that is, he will plan actions that have a sense of
payoff against or in the context of a value system. The value system is, however, multi-
dimensional-it has relatedness to military goals and objectives (these are the easier elements
to estimate) but also to notions of personal value (does this action imperil my hoped-for
promotion?), and the societal notions of value we all grow up with (will this action cause
harm to anyone?)-these are the harder elements to judge. The development of an Intended
action is dependent on a particular or sequence of particular outputs (from a DA) in the
context of judged value.

10. Action (T+deltaT) - [DA Outputl T, DA Outputl(T-1), etc., and Imnplied/calculated Value of
Action, given the DA Output]

11. By creating any false output of the DA (by any means), the deceiver corrupts this relationship
and leads the deceived toward taking an alternative action. The notion of Value above could
also be labeled "Policy." Based on a priori analyses, there could be policies set down which
declare that if "This" (an outcome or estimate of a situation-as e.g., from a DA Output, as
above), then do "That" (i.e., take Action [x]).

Usefulness is another trait associated with Trust. This relates to the ability of a DA to respond in
a "useful"~ or "responsible" way. This relates also to notions of Value (in the large) but also to
notions of Utility of the DA itself, in a local or specific sense. By this latter remark is meant that
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if the DA performs and produces output that is consistent with its planned Concept of
Employment, then it will be judged "Useful" in this sense (operating as designed). But
Usefulness also takes us back to the notions of Value-DAs can be Useful, but not Valuable.
The degree to which Usefulness and Value are equivalent depends (again) on the degree to which
users have been involved in the specification, design, and development (including testing) of the
DA. Most deceivers would probably not have insight into notions of Usefulness, since this can
mean many things-but they may have some notions of Value which can be exploited as
described above.

We also see from Wickens (1994) that:

Likelihood of use of automation -{Trust in auto. / Self-confidence of operator)

That is, we see that the use of automation seems to vary directly with trust and inversely with
operator self-confidence, which implies a number of things. For example, if the users are known
to be poorly trained then their self-confidence would presumably be low and their reliance on
automated DAs high, perhaps to an unwarranted degree. Also, if the DA has only been built to
handle easy cases and has never confronted the (rare) fringe-condition-where it can fail-the
user may develop an unwarranted Trust in its competence. DAs that are overiy automated, to the
point of not incorporating much user involvement, can also create situations or patterns of use
where user skills atrophy, self-confidence goes down, and (unwarranted) use/Trust goes up.

In Table A.l1, we have also summarized Sheridan's trust characteristics from various viewpoints.
The first three columns of the table .are basically a synopsis of Sheridan's assertions. The last
three columns attempt to provide some perspectives on the informational dependencies and
vulnerabilities of each trust element, and some ideas on possible metrics which could be used in
the proposed human-in-the-loop experiments of a possible next phase. If we summarize some of
the potential techniques that an adversary could use in his Information Operations to create
distrust, we see that a list such as shown in Table A.2 evolves from reviewing the "Information
Vulnerabilities" column of Table A. 1. It can be seen that there are two basic pathways to
creation of distrust: the Direct 1W or "attack on external perception" that can be created by
deceptive actions, etc., fully controllable by an adversary-these basically create distrust in the
Reliability and Robustness attributes of trust and cause the user to suspect the veracity of the DA
across different operating conditions; the other is the Indirect IW attack, which offers the chance
for corrupting many more trust attributes but at the expense, to the adversary, of developing the
(covertly-gathered) intelligence required to do this, or at least do it well. However, general
knowledge about how DF processes work and are typically implemented, can, without system-
specific intelligence, allow for a generalized 1W attack on the data fusion DA, albeit with some
lesser degree of effectiveness.
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Table A.2 Possible Information Operation Attacks on Trust Attributes

Trust Attribute Type of Information Operation to Compromise Attribute
Reliability Whatever "makes the problem look different"; this could range from Deception

__________________to internal attacks on the DF decision aid
Familiarity Creation of unfamiliar notation or symbology; this would come from internal

attacks (i.e., Indirect LW), and would require the adversary to have an idea of
the standard (familiar) symbology being used (i.e., a priori intelligence of this
DA design feature)

Understandability Internal attacks on the basic operations of the DF software and in addition its
modes of interaction with the user. This too requires the adversary to have a
priori intelligence about the DF process design and the operations of the

_________________software and its HCI aspects.
Explication of Intention This is the "Intent" of the data fusion DA, not that of the true adversary. Thus,

confounding of this aspect of the user's trust in the DA requires the same action
_________________as for confounding Understandability.

Usefulness Information attacks that impede work flow or create the wrong DA product.
These attacks also require some degree of insight into the workings and

_________________employment patterns (concept of operations, or Con~ps) of the data fusion DA.
Dependence This feature could allow for creative adversarial actions that lead the user into a

dependency (complacency) pattern and then confound the DA at some critical
moment. Here, too, some a priori intelligence is required about the planned or

__________________designed use patterns of the DA

REFERENCES

Sheridan, T. B. (1988). Trustworthiness of command and control systems. IFAC Man-Machine
Systems, 427-43 1.

Wickens, C. D. (1994). Designing for situation awareness and trust in automation. IFAC
Integrated Systems Engineering, 365-370.
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APPENDIX B

Summary Literature Review

The following tables have been provided to summarize some of our literature review in
succinct format. Basically, there are two bodies of literature summarized here: the Social-
Psychology Literature (Table B. 1) and the Human Factors Literature (Table B.2). For each, the
tables are similarly formatted, and identify or describe:

-the reference
-the Problem Domain or context of the work
-any Definition of Trust provided (explicitly)
-the Basic Model of Trust asserted or used
-the Parameters or attributes asserted or discussed
-any Measurements or Findings of the work

Nine references are reviewed in Table B. 1, and eight are reviewed in Table B.2. The
references are shown in the reference section.
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Modeling Human Trust in Complex, Automated Systems
Using a Lens Model Approach

Younho Seong, Ann M. Bisantz
State University of New York at Buffalo

INTRODUCTION

Automation has played an important role in supporting human and system performance in
complex modem systems, such as aviation and process control. The advent of automation has
changed the role of the human operator from performing direct manual control to the
management of different levels of computer control. Human operators assume roles as
supervisory controllers, interacting with the system through different levels of manual and
automatic control (Sheridan & Johannsen, 1976). Therefore, the human operator must understand
how to interact with the automated system, how the automation works, how to respond to system
outputs, and how and when to intervene in the process, if the process fails. One factor affecting
this interaction is the operator's trust in the automated system. Sheridan (1980) emphasizes the
importance of human trust in automation as playing a key role in determining the level of a
human operator's reliance on and the degree of intervention in automation and appropriate use of
automation. Trust has been studied mainly from a sociological perspective which focused on
interpersonal relationship between individuals. Following the sociological definitions of trust,
more recent studies (Muir & Moray, 1996; Lee & Moray, 1992) have constructed models of
human operator's trust in automated systems and shown how human trust in automated process
control systems may affect system performance. These studies have focused on determining the
extent to which human operator's trust in machines might affect system performance, and if so,
identifying potential factors affecting the level of the operator's trust. An important concept
regarding human trust is the notion of calibration: operators must have an appropriate level of
trust in the information or automated system, given the characteristics of the situation. As Muir
(1994) indicated, "well-calibrated" operators are better able to utilize automated systems. In case
of aided adversarial decision making systems, understanding how well an operator judges the
level of data integrity, based on the observable characteristics of the situations, becomes a very
critical issue. We propose that Brunswik's Lens Model of human judgments (Brunswik, 1955;
Hammond, Stewart, Brehmer & Steinmann, 1975) may be useful in formalizing the study of
trust. The Lens Model provides dual models of a human judge and the environment to be judged,
and allow the extent to which an individual's judgment behavior captures the structure of the
environment to be assessed. This extent can provide a description of how well an operator's trust
in the information, is calibrated to the actual environmental situation, as described by the
relationship between those characteristics and the actual integrity of the information.

PREVIOUS MODELS OF HUMAN TRUST

Sociological Models of Human Trust

Rempel, Holmes, and Zanna's (1985) definition of trust contains critical aspects of trust
which can be used to examine human trust in automation from the human factors perspective.
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They emphasized not only components of interpersonal trust, but also the dynamic characteristics
of trust toward a partner, regarding trust as a generalized expectation related to the subjective
probability which an individual assigns to the occurrence of some set of future events (Rempel,
et al., 1985). That is, the study suggested that humans evaluated their partners based on the
characteristics they observed. Therefore, these characteristics served as cues to determine the
level of human trust. The study is valuable in that it allows us to understand the importance of
the role of human trust in the sociological domain and to identify certain characteristics of trust.
Other research has also suggested that trust is a multi-factorial concept (Barber, 1983; Zuboff,
1988).

Human Factors Models of Human Trust

Based on Barber's (1983) study of trust, Muir (1994) constructed a hypothetical model of
trust in machines, consisting of a linear combination of the characteristics identified by Barber.
That is, the model represents human trust as a combination of persistence, technically competent
performance, fiduciary responsibility, and interaction effects between these characteristics. In
addition, Muir produced an integrated framework or model by crossing Barber's (1983)
dimensions of trust, with Rempel et al. 's (1985) framework of trust as a process of hierarchical
stages, developing over time. Lee & Moray (1992) extended the Muir's work and established a
dynamic, mathematical model of trust based on a series of experiments. The model reflected
dynamic characteristics, in that the current level of trust was affected by the previous level of
trust and system-oriented factors such as the presence of automation faults and level of joint
system performance. Both models, however, failed to explicitly consider the calibration of trust
and the true state of automation trustworthiness, although the need to assist human operators in
calibrating their trust was recognized. We propose that Brunwik's Lens Model may be valuable
in describing human trust in automated systems, since it provides a mechanism for capturing this
notion of calibration as well as the true state of automation trustworthiness.

LENS MODEL

Brunswik's Lens model, shown in Figure C.l1, is a symmetrical framework in which
describes how both the environmental structure and patterns of cue utilization collectively
contribute to judgment performance. In this model, the judge combines cue information (Xi)
about the environment to make a judgment (Ys). The model represents the classical notion of
information transformation from stimulus (information presentation) to response (judgment) in
which humans process information internally to yield some functional response based on cues
observed, which in turn are representations of the environmental state. Thus, the model includes
not only a classical decision concept, i.e., how humans sample and combine cues presented to
them, but also the relationship between available cues and the true state of the environment. By
analyzing a judge's cue utilization policy, therefore, we may be able to understand how that
judge has adapted to the structure of the environment. The predictability of the environment,
given a set of cues (the ecological validity of the cues) can also be assessed. Therefore, this
model allows us to assess and evaluate how well the true environment structure is represented via
a set of cues. Additionally, achievement, denoted as ra, represents how well human judgments
correspond to the actual values of the environmental criterion to be judged. Achievement is
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shown in Figure C. 1 as a line connecting judgments to criterion values. Because the Lens Model
provides the means for considering the judge's adaptation to the environment, and the degree of
achievement, both of which relate to the calibration of human trust, it seems that the use of the
Lens Model approach to model human trust in automated systems is reasonable.

CUES

SYSTEMSO

Conepualymoelng umn rut i atoate sstmsusig heLen Mde i

a syste compoent istoFbe urused CAIn nwi Lens Modeltemhnhenvrmnalcirons

thelactuaely strusgtworthnssoahecmpnn. The judgment mdldi hscs is the operator's assesment of that

trustworthiness. To make this judgment, the operator must rely on a set of observable cues which
have some relationship to the components trustworthiness. In this paradigm, the concept of
calibration is explicitly measured by achievement (ra,)-the extent to which the operator's
assessment of trustworthiness matches the true state of the environment. One can also consider
calibration to include operator's adaptation to the structure of the environment, in terms of the
relationship between the cues and actual integrity of information.

Further specification and experimental verification of this model of trust in automation
beyond the general level noted above presents certain difficulties, however. First, there is no
clear, objective measurement of the true state of environment, in terms of its trustworthiness.
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Generally, trust as a state in itself has been measured only subjectively. This is problematic in
terms of the Lens Model formulation, since application of the Lens Model and evaluation of the
model parameters requires knowledge of the true environmental state. To circumvent this
difficulty, we propose transforming the judgment from one of an assessment of trustworthiness to
one that is more performance oriented. From an engineering standpoint, we are interested in
human trust in a system to the extent to which that trust affects system performance. For instance,
we are interested in whether or not operators utilize an automated controller, or obtain certain
data, given their trust in that controller or information source. The true state of the environment,
in terms of the adequacy of the controller, or the integrity of the data source, can be objectively
determined. For these examples, the operator judgment would be whether to use the controller or
the data. More generally, the operator judgment is one of component utilization, and true state of
the environmental criterion is whether or not the component should have been used. In terms of
trust, this assumes that an operator's behavior in utilizing a system component reflects their trust
in that component.

Second, to implement a Lens Model description of human trust in automation, it is
necessary to specify what cues might be available for an operator to make a judgment about
whether to use a system component. Candidate cues include the components of trust identified by
previous studies of trust (e.g., Barber, 1983; Rempel, et al., 1985; Zuboff, 1988). For instance,
cues could include such factors as predictability, dependability, faith, reliability, competence or
robustness. To be included in a quantitative Lens Model, these cues would be both measurable,
and available to the operator. The availability of these candidate cues to the operator depends to
some extent on how information is displayed to operators. However, the consideration of how to
measure these cues must be addressed. For example, consider predictability, If we define the
environment to be judged in terms of a subsystem, or set of systems, we can represent
predictability in terms of the degrees of freedom in performance that were designed into the
system. That is, predictability could be measured in terms of allowed error or performance
variance. The smaller the degree of freedom, or allowable error, the more predictable the system
is. If predictability is one component of trust, as Barber claimed, then trust will be negatively
impacted by a large degree of performance variability. Additionally, the reliability of a system or
component could be measured in terms of past performance (e.g., breakdowns, errors, etc.).

Instantiating the Model

To evaluate the model, an experimental framework has been established in an
Information Warfare (1W) domain (Seong, Llinas, Drury, & Bisantz, 1998) in which one can
consider trust in the context of aided adversarial decision making, where military officers must
assess the integrity of information which may be intentionally altered or degraded by an enemy.
In this domain, the points of attack by an enemy can be the real battle situation, data gathering or
fusion algorithms, or a data transfer network. By changing the points of simulated attack, we may
be able to observe how operators successfully calibrate their trust in terms of accurately
pinpointing the point of attack, and changing the level of trust. In the 1W domain, studying
human trust is important for several reasons. For example, forces might be vulnerable to
information attacks which diminish their trust in data fusion or other decision aids, rendering
these assets less useful, or to deceptive attacks, in which an inappropriately high level of trust in
the aid is maintained. In terms of the Lens Model approach, data, fusion algorithm outputs,
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would be judged as usable or not (e.g., trustworthy or not), based on operators understanding of

the predictability, reliability, etc. of the information displayed to them.

SUMMARY AND FUTURE RESEARCH

A Lens Model approach for modeling human trust in automated systems has been
proposed (Figure C.2). Because the Lens Model provides the means for modeling both human
judgment policy and the actual structure of the environment, it allows operator calibration to the
actual trustworthiness of a system to be explicitly considered. Conceptual solutions for
addressing certain difficulties with this approach, such as the objective determination of the true
state of system trustworthiness, and the identification and measure of cues which reflect system
trustworthiness, were discussed. Finally, an experimental framework in the domain of
Information Warfare was described, which may provide the means for further instantiating and
evaluating the effectiveness of this model of human trust in automation.

Observable Characteristics

Useful or not? X s rntue

Figure C.2 Model of human trust in automation using the Lens model
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Human Trust in Aided Adversarial Decision-Making Systems

Younlio Seong, James Llinas, Colin G. Drury, Ann M. Bisantz
Center for Multisource Information Fusion

State University of New York at Buffalo

INTRODUCTION

The study of trust has a long history in sociological literature; however, that history is not
rich in empirical studies. Some representative, recent studies of human trust in automation have
been performed on a continuous chemical process control simulation (Muir & Moray, 1996; Lee
& Moray, 1992, 1994). This means that the objects which human operators dealt with were
machines or displays representing the behavior of machines. Thus, the induced characteristics of
human trust in automation were essentially concerned with predictability, dependability, and
faith, whose attributes could be easily captured from the behavior of machines. Current
automation, which in the context of this study is technology using a data fusion process, produces
estimates of situational conditions which are, ideally, of reasonable but imperfect quality, i.e.,
there is some uncertainty in the estimates. However, this study extends the studies of trust to
situations where, additionally, the automation system is open to deliberate manipulation by
adversaries. Having another person or a group of people at the other end changes the central
scheme of the problem. In this environment, called Information Warfare (IW), human operators
must deal with faults resulting from both mechanistic automation failure (imperfect data fusion)
and premeditated deception or misguidance manipulated by an adversary. Human operators
should have the ability to distinguish the faults perpetrated by the foe, to calibrate their trust in
decision-making aids and to eventually accomplish their mission efficiently. Without knowing
the system's vulnerability from an adversary, human operators may regard faults of corrupted
information by an adversary as automation failures in the data fusion process or malfunction of
displays. In this paradigm, some characteristics of trust, which were identified in previous
studies, such as fiduciary responsibility, may not be applicable because of the hostile
environment. Simultaneously, the new paradigm should be able to include the simple relationship
between human operators and decision-making aids.

POTENTIAL CHARACTERISTICS OF HUMAN TRUST AND IMPLICATIONS FOR
1W

Among the sociological studies defining trust in the interpersonal relationships, Rempel,
Holmes, & Zanna (1985) characterized trust as a multi-faceted construct having three
dimensions. While this represents one classification of trust characteristics, Sheridan (1980)
suggested a more comprehensive set of seven possible characteristics of human trust in the
human-machine systems. As we are dealing in 1W with trust of machines, and the data fusion
processes, the Sheridan's classification is a better starting point. We will consider the
applicability of Sheridan's characteristics in turn where the domain is 1W.
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The first of Sheridan's aspect of trust in automation seems to relate to notions of
reliability. This implies a system of reliable, predictable, and consistent functioning. In other
words, a sense of reliability in a decision aid (DA) is established when it can be observed to
create the same output repeatedly under a particular set of circumstances. There are three
fundamental points of vulnerability from the real world situation to the display for operators.
These are true input, observable input and displayed output. True input is susceptible to
deception and corruption of operations and actions by artificially creating a false circumstance.
Observable input is susceptible to parametric or algorithmic corruption. This is creating false
output from internal processes in spite of a correct circumstance in the real world. Displayed
output is susceptible to algorithmic corruption. This is creating a false display in spite of both (a)
an unperturbed real world and (b) unperturbed (non-display related) processing operations.

The second aspect of trust is a sense of competence or robustness in the DA. That is,
robustness supports expectations of future performance based on capabilities and knowledge not
strictly associated with specific circumstances that have occurred before. In some sense, this
represents a calibration of the decision-aiding software processes or algorithms. Corruption of a
operator's trust in the DA through 1W techniques places a requirement on the deceiver to know
the nature of adaptivity in the DA internal workings. However, if the operator is astute in the
likely technology for the DA, a reasonable approximation to the inner workings may be feasible.
Alternately, if the deceiver is aware of the limits of capability of the DA, the operator could
create circumstances which are in those fringe operating regions and reduce the operators
impressions of the competence of the DA.

Familiarity is the third feature or aspect of trust. Often a person confronts a situation or
an object with a high degree of novelty, but still feels familiar with and able to deal with the
situation. Either from a naturalistic or inherent cultural expectation, familiarity may prevent any
exploratory risk-taking behavior to diagnose the situations, or to identify objects whether new or
familiar. Consequently, it may induce biased decision-making. Because of the fact that
familiarity is not based on any scientific knowledge or expertise and tends to be inherited from
those who have cultural similarity with us, the person who is confronting an unfamiliar or
unanticipated situation or object will be very vulnerable to deception. Unlike other industrial
settings where unanticipated, and so unfamiliar events are sometimes confronted by operators,
operators in military command, control, communication and information ( 3 )systems may not
have been exposed to or trained in unanticipated events. For automated DA's, this can involve
the use of common or perhaps military-standard symbology, nomenclature, etc.

Sheridan's fourth characteristic is understandability . The construct of understandability is
equivalent to developing an appropriate mental model, possibly with the aid of familiarity. In
designing a machine to aid an operator, understandability usually is affected by the degree of
transparency of the system which the operator can see through the interface to the underlying
system. Opaque machines or interface media will not only prevent the operator from trusting the
machines, but also from engaging in problem-solving activities in cases of warnings or mishaps.
Thus, any means by which an adversary could corrupt the graphic user interface or other interface
functions, in order to confound the operators' ability to understand a system, would lead to
distrust. This is particularly important if the operators do not participate in the development
process. If this is the case, then the degree of understandability governs the operators' ability to
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form his own mental model of the inner workings of the DA, which also lends itself to
predictability. Here the deceiver can simply have the goal of generating randomness in his or her
attack, since irregular patterns between input and output will aid in loss of trust.

Next we consider Explication of Intent. Instead of leaving a person in a position where
the covert meanings have to be discovered and understood from the systems' behavior, this
attribute allows people to trust others over those who just perform tasks. However, current
technological improvements in designing intelligent computers are not well enough developed to
allow operators to communicate using higher level intentions. Unless we develop intelligent
machines, which can specify their intentions of future actions outright, we have to rely on the
current available technologies, e.g., in the form of symbols, short statements, or a combination of
both which are pre-progranmmed by system designers. Therefore, we are often forced to trust (or
not to trust) based on a symbolic medium through which one produces effects and on the basis of
which one derives an interpretation of "what is happening." Estimating intent is one of the more
difficult things to do in military situations but is also, if done correctly, one of the highest payoff
areas. Intent is approximately an explicit indication of a future planned action to which the actor
is committed; the difficulty is in defining and observing those indicators. An actor develops
intent based in part on his value system; that is, the operator will plan actions that have a sense of
payoff in the context of a value system. The value system is, however, multi-dimensional; it has
relatedness to military goals and objectives but also to notions of personal value and the societal
notions of value we all grow up with; these are the harder elements to judge. The development of
an intended action is dependent on a particular or sequence of particular outputs (from a DA) in
the context of judged value;

Action(T + AT) =(DA Output I T, DA Output I (T-J),... .and implied/calculated value of action, given the DA Output)

By creating any false output of the DA (by any means), the deceiver corrupts this
relationship and leads the deceived toward taking an alternative action.

Usefulness is Sheridan's sixth trait associated with trust. Usefulness of data or machines
means responding in a useful way to create something of value for operators, eventually
developing into trust. In fact, one branch of decision theory is explicitly based on such values:
"Utility theory." This, however, raises a question: Does usefulness of data ensure the quality of
decision-making, or make operators dependent on the DAs? In other words, do notions of data
values help decision performance, induce trust, or both? Studies indicated that humans tend to
behave in different ways rather than using the estimated utility (e.g., Tversky & Kahneman,
1974; Pulford & Colman, 1996; Klein, 1997). Usefulness relates to the ability of a DA to respond
in a useful or responsible way and to notions of value and utility of the DA itself in a local or
specific sense. By this latter remark, it is meant that if the DA performs and produces output that
is consistent with its planned concept of employment, then it will be judged useful in this sense.
However, Usefulness also takes us back to the notions of value; DA's can be useful but not
valuable. Most deceivers would probably not have insight into notions of usefulness since this
can mean many things, but they may have some notions of value which can be exploited as
described above.
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The final aspect of trust in Sheridan's classification is Dependency. Trust is not a useful
concept unless an operator is willing to depend on a machine. Dependency is one aspect of trust
accessible to empirical measurement, i.e., by the fraction of time an operator behaves as if the
machine were trustworthy. From Wickens (1992), we see that likelihood of use of automation is
commensurate with level of trust in automation and inversely related with level of self-
confidence of operator which implies a number of things. For instance, if the operators are
known to be poorly trained then their self-confidence would presumably be low and their reliance
on automated DA's high, perhaps to an unwarranted degree. Also, if the DA has only been built
to handle easy cases and has never confronted the fringe-condition where it can fail, the operator
may develop an unwarranted trust in its competence.

STRUCTURING EXPERIMENTS FOR INVESTIGATING TRUST IN AN IW DOMAIN

Given the tools for measuring trust that were presented in human factors literature, it is
possible to consider the types of empirical studies which could be performed to investigate
human trust in 1W domains. Such controlled investigations would provide a better understanding
of what situation characteristics influence trust, as measured by the either or both of the
psychophysical ratings and performance and process measures, and also how changes in an
operator's trust in system components affect ultimate system performance. In order to develop
possible scenarios for investigating aspects of trust in 1W, it is instructive to consider how trust
has been investigated in other automated systems.

Previous Investigation of Trust in Automated Support Systems

As described before, empirical work in the area of human trust in an automated support
(decision-aided) system is limited, and has concentrated primarily on investigating trust in
simulated, semi-automated process control environments. Moreover, and importantly as regards
our concerns for 1W environments, these studies have been in non-adversarial domains (i.e.,
Muir & Moray, 1996; Lee & Moray, 1994). Different system aspects were altered to see how
participants' trust in systems components, such as the automated controller, was affected. In
particular, Muir & Moray (1996) altered the quality of the pump systems by introducing either
random or constant errors in its ability to maintain a set-point, introduced errors into the pump's
display of its pump rate (although actual pump rate was error-free), and the performance of the
automated controller in setting and maintaining appropriate settings for the pump. Lee and Moray
introduced faults into pump performance (Lee & Moray, 1992) or faults into either automatic or
manual controllers (Lee & Moray, 1994). These conditions are not unlike the type conditions
that may arise in 1W environments. Trust was measured both subjectively, using rating scales,
and objectively, by logging participants' actions (e.g., hypothesizing that more or less use of an
automated control system implied more or less trust in that automated system). Because faults
were introduced into different components, these experiments investigated trust in a particular
system aspect rather than trust in automation generally.
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Designing Experimental Scenarios for Studies of Trust in AADM Environments

In the AADM environments of interest to this study, pictured in Figure D.2, data fusion
techniques are used to aid the decision-maker by synthesizing data from numerous sources into a
form useful for the decision-maker. Because the environments of interest are ones involving
adversaries, the possibility of corruption in either or all of the data, fusion algorithms, and
displays involved in such decision-aiding systems can be introduced by Information Operations
manipulated by the hostile forces. It is in such environments that we would like to perform
human-in-the-loop experiments to study various hypotheses related to human trust under 1W
conditions and in AADM environments. As mentioned before, the literature is not very helpful in
this regard. The multi-faceted manner in which trust was investigated in the above experiments
suggests two dimensions along which studies of human trust in complex environments, such as
an AADM environment, could vary: we called these the system dimension, and the surface-depth
level.

System Dimension. In the pasteurization experiments (Lee & Moray 1994; Muir &
Moray, 1996), the quality of system performance was manipulated at what could be called
different system levels. Faults or random errors were introduced at the level of the (system)
environment, the process control system itself (i.e., the pumps), and at the level of a (system)
control intervention (i.e., the automated controller). There are analogous levels in an AADM
environment. The physical component level in the pasteurization experiments-the pumps and
heaters-corresponds to the actual tactical situation that is taking place. Just as the states of
pumps and heaters can be observed and controlled, the states of hostile and friendly assets can be
-assessed, and actions related to the situation can be taken. The next level, datafiusion systems
and algorithms, which automatically combine and synthesize information obtained form the
tactical environment, can be considered analogous to the automated controller in the
pasteurization experiments, which used information from the physical control system to
automatically take control actions. Finally, in an AADM environment, one can consider a third
level, the interface level. At this level, the results of the data fusion algorithms are displayed to
the operator, in order to aid decision making.

Surface-Depth Level. Another dimension along which investigations of trust can vary is a
surface-depth level. The surfiace level corresponds to the information available about the
environment (as formalized in Brunswik's Lens Model; Cooksey, 1996), whereas the depth level
corresponds to the actual state of the environment. The manipulations performed by Muir &
Moray (1996) can be described in terms of these dimensions. Muir & Moray (1996) manipulated
both the characteristics of the pump itself (depth level) and the display of the pump rate (surface
level). This surface-depth dimension can be applied at all three of the system dimension levels
described above, resulting in six combinations (see Figure D. 1).

Further Categories of Corruption. Within each cell of upper portion of Figure D. 1, it is
possible to identify various types of malfunction, or causes of information degradation or
corruption.

*Degradation. The quality of the system component can be degraded through constant, random
errors, or discrete failures.
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*Failure. System components can fail completely resulting in a loss of data.

Different causal factors for the corrupting processes can also be considered:

"* Non-intentional. System components can degrade due to non-intentional malfunction.

"* Sabotage. An enemy can take intentional action to interfere with a system component.

"* Subterfuge. An enemy can take intentional action both to interfere with a system component,
and to disguise that sabotage.

Given a particular experimental context, the surface-depth and system dimensions, along
with the levels of malfunction, and causal factors, can be used to systematically define a series of
experimental manipulations which can be used to investigate issues of trust in AADM
environments (Figure D. 1).

Design of Experimentation. For studies of AADM, a possible experimental context would
be an interactive battle simulation in which people must make interpretations and/or decisions
(e.g., identification of unknowns, decisions to engage hostile forces) based on information
gathered and fused into decision-aiding estimates about the situation, such as those related to
electronic emissions, weapons profiles, and locations and movements of various agents. The
simulation would include data fusion modules which could synthesize environmental
information in order to aid the participants decisions (Figure D.2, on the next page).

System Dimension Surface-Depth Dimension
_____________________ Surface Level Depth Level

Environment: Tactical Situation Sensed and Observed Data Evolving Tactical Situation

Intervention: DF Algorithms Result of Algorithms Data Fusion Algorithms
Interface: Decision Aid Display Format Information to be DisplayedI

Level of Malfunction Causal Factors
(Degradation/Failure) Non-intentional,

< Sabotage, Subterfuge

Figure D.1 Components of an AADM Environment described along a system and a surface-depth dimension.
Potential experimental scenarios and manipulations, organized by system and surface-depth dimensions and

levels of malfunction, causal factors.

In either cases of having single or multiple participants, it is also possible to consider that
some agents or participants would be synthetic; that is, created in software as so-called intelligent
agents. This would add a dimension of experimental control, since the behavior of the agent
would be fully controllable, or at least controllable within known limits. If one is to study such
environments experimentally, a synthetic environment of this type needs to be created in a
controlled way. In developing such simulation environments, one of the primary capabilities to
establish is that of the problem space or the framework from which problem information, data,
and parameters evolve. Some call this type of capability a scenario generator, in which simulated
observable cue's are produced as inputs to processes under study. In our case, we are proposing
the use of an existing capability for this, the so-called "SAGE" (Semi-Automated Ground
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